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Research Questions/Outline

* Can new wavelet methods help us understand
historical streamflow variability?

e Can a new climate index be constructed that is
better correlated with mid-Atlantic
streamflow than existing climate indices?

* Was historical streamflow variability
influenced by tropical convection?



WAVELET ANALYSIS
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Delaware River Streamflow
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Wavelet Analysis

* Used to decompose variance (power) of a
time series as a function of time and

frequency

* Wavelet analysis can detect embedded
oscillations in time series



The Wavelet Transform

W) = (25 xatboln —m) 2]

X, = time series
ot = time step determined from data

1
Wo(n) = m~V4eiwong ™3’

Wavelet power = (WX (S))z



The Wavelet Transform

Application of Wavelet Transform
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The Wavelet Power Spectrum

o X(t) = A(t)sin(2mft) + noise A(t) =t/500 2mf=0.2
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Pointwise Significance Testing

* The wavelet power needs to be compared to
that of a red-noise background.

* Red-noise can produce large wavelet power

* Tests each wavelet power coefficient
independently



(a) Daily Delaware Streamflow
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Key Features
Significant variability at periods less than 2 months due to weather

events
Significant low-frequency variability at a period of 4-years
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Cumulative Areawise Testing (Schulte, 2015)

Assesses the significance of patches based on
cumulative area at different pointwise
significance levels

Uses ideas from persistent homology
(Edelsbrunner, 2010)

Reduces multiple-testing artifacts (Maraun et al,,
2007)

Researcher need not choose a pointwise
significant level

Test takes advantage of the autocorrelation
among wavelet power coefficients



Cumulative Areawise Testing



Comparison of Tests

X(t) =sin(2tft) + noise an =0.2

Anything outside dotted region are artifacts of multiple testing/spurious results.

(a) Pointwise

Period
w
(]

128
256

Period
w
N

128
256

| | | | | |
100 200 300 /400 500 600 700 800 900 1000
Time

Anything within dotted region are true
positives or what should be detected. 13



Gray shading =

95% confidence
Wavelet Power Spectra of Streamflow Anomalies :
(a) Delaware River ‘ o B M (b) interval (Schulte

et al., 2015b)
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Key Features
* Significant variability at periods less than 2 months
* Significant periodicity at a period of 2 years from 2003 through
2014

 Significant periodicity at a period of approximately 4 years -






Introduction

* Many studies have analyzed the impacts of
the North Atlantic Oscillation (NAO) on
precipitation and streamflow variability.

* |t useful to compare new climate indices to
the well-studied NAO.



North Atlantic Oscillation

https://www.e-education.psu.edu



North Atlantic Oscillation

https://www.e-education.psu.edu



Cross-correlation
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Cross-correlation between Daily NAO
Index and Daily Streamflow Anomalies

Streamflow Leads

Streamflow Lags

NAO index is
weakly but
significantly
correlated with
streamflow

Can we construct
an index that is
more correlated
with mid-Atlantic
streamflow



The MSLP Dipole

Lag Composite Between Delaware River Streamflow and MSLP

(@) lag = -20 days (b) lag = -16 days (c) lag = -12 days
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Period (Months)

The MSLP Dipole Index
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Key Features
* Significant variability at periods of 4-14 days
 Enhanced power at a period of 41 months
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Cross-correlation Analysis

(a) Atlantic MSLP Index (b) Southeast MSLP Index
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* All three new MSLP indices correlate better with
streamflow than the existing NAO index
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Wavelet Coherence: Predictability Beyond
the Weather Forecasting Timescale?

Decomposes a correlation coefficient as a
function of time and frequency (Grinsted et al.,
2004)

Wavelet coherence takes values between 0 and 1

A value of 1 indicates the strongest possible
relationship

0 means time series are independent

Significance of wavelet coherence is assessed
using Monte Carlo methods



Wavelet Coherence between Streamflow and the MSLP Dipole Index
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Key Features
 Significant coherence at daily and seasonal timescales

e Significant coherence in the 1-4 year period band
* The coherence at 2 and 4 years coincides with significant
streamflow variability (slide 14)
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TROPICAL INFLUENCES




Mid-latitude Response to Tropical Convection (Hoskins and Karoly, 1981)
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Tropical Convection and the MSLP
Dipole Index

Lag Composite Between MSLP Dipole Index and 300 hPa Streamfunction

(@) lag = -20 days

(d) Iag = -8 days
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Conclusions

New and powerful tools in wavelet analysis
detected significant variability in the Delaware
River time series at period of 2 and 4 years

A new MSLP dipole index was constructed that is
better correlated with mid-Atlantic streamflow
than existing climate indices

The MSLP dipole index may offer predictability
beyond the weather forecasting timescale.

The MSLP dipole index was related to tropical
convection



Software Availability

e Software for areawise testing and confidence
interval calculations will be available upon
publication

 Geometric significance testing (Schulte et al.,
2015) software is available through
justinschulte.com

* Please email me at jas6367@psu.edu if you
are interested in the software used in the
presentation
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