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Abstract  

New statistical and topological methods in wavelet analysis are developed to help 

fully understand historical hydroclimate variability. The methods improve upon existing 

methods and enhance confidence in results. In particular, a geometric significance test was 

found to produce results similar to an existing areawise significance test while being more 

computationally flexible and efficient. The geometric test determined that features in 

wavelet power of the North Atlantic Oscillation (NAO) are indistinguishable from a red-

noise background, suggesting that the NAO is a stochastic, unpredictable process, which 

could render difficult the future projections of the NAO under a changing global system. 

The geometric test did, however, identify features in the wavelet power spectrum of an El 

Niño index (Niño 3.4) as distinguishable from a red-noise background. A topological 

analysis of pointwise significance patches determined that holes, deficits in pointwise 

significance embedded in significance patches, are capable of identifying important 

structures, some of which are undetected by the geometric and areawise tests. Niño 3.4 

time series contains numerous phase-coherent oscillations that could be interacting 

nonlinearly. Another statistical test, the cumulative areawise test, was also developed and 

was found to have greater statistical power than the geometric test in most cases, especially 

when the signal-to-noise ratio is high. The new testing procedure was applied to the time 

series of the Atlantic Multi-decadal Oscillation (AMO), the NAO, Pacific Decadal 

Oscillation (PDO), and the Niño 3.4 index and determined that the NAO, PDO, and AMO 

are consistent with red-noise processes, whereas significant power was found in the 2-7 

year period band for the Niño 3.4 index. High-order wavelet methods were developed to 

understand nonlinear climate phenomenon. A local autobicoherence spectrum of the QBO 

time series showed that the QBO time series contained a mode with a period of 28 months 

that was phase-coupled to a harmonic with a period of 14 months. An additional 

nonlinearly interacting triad was found among modes with periods of 10, 16, and 26 

months. The oscillations were found to be skewed so that negative QBO regimes were 

preferred, and also asymmetric in the sense that phase transitions between the easterly and 

westerly phases occurred more rapidly than those from westerly to easterly regimes. The 

developed methods were applied to Mid-Atlantic region hydroclimatic time series. The 

results from the wavelet analysis showed that 18- and 26-year periodicities were embedded 

in the streamflow time series of the Delaware, Hudson, and Susquehanna Rivers. Decadal 

variability of streamflow was coherent with the El-Niño/Southern Oscillation and the PDO. 

The Southern Oscillation explained 37-54% of the 1960s drought, 33-49% of the 1970s 

pluvial, and 19-50% of the 2000s pluvial in the three river basins. A composite analysis 

with meteorological data determined that the anomalously high daily streamflow events 

during the recent pluvial were associated with Rossby waves emanating from the tropics 

and sea-level pressure (SLP) dipole pattern over eastern North America (ENA). A new 

ENA SLP dipole index was constructed, which could explain more daily streamflow 

variance than the existing climate indices. The ENA dipole index was also found to be 
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phase-locked to the Gulf Stream Index at a period of 74 months so that salinity variability 

at that timescale may have resulted from ENA dipole-related changes in precipitation.  
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Chapter 1 

Introduction  

1.1 Background and Motivation   

Hydroclimate variability across a region has impacts on many societal systems. 

Hydroclimate variability includes droughts and wet periods (pluvials). During droughts, 

water resources are stressed and agriculture is strained, which may have economic 

implications. Dry periods may also increase the risk of forest fires, which can devastate 

forests and nearby communities.  Floods related to wet periods also pose threats to human 

safety and property. Floods, for example, can inundate towns and cities and relief efforts 

can be costly. In some regions, excessive rainfall can create mudslides, which are 

particularly destructive and can occur with little warning. In other regions, excessive 

precipitation results from hurricanes, powerful storms that are capable of producing 

enormous amounts of precipitation.    

Given the potential societal impacts of hydroclimate variability, it is important to 

study the causes of past hydroclimate variability. Two primary ways of studying 

hydroclimate variability are the analysis of long data sets and modeling. In modeling 

studies, one has the flexibility, for example, to prescribe sea surface temperature in a 

oceanic region to understand their impacts on regional climate variability. Models also 

have the advantage of allowing the construction of data sets otherwise unavailable. For 

example, models may generate data at higher temporal resolutions than observed data sets. 

The analysis of observed data sets involves the implementation of various statistical and 

time series analysis methods and the assessment of statistical uncertainty of the results. The 

use of the time series analysis methods, however, are limited by the length of the data sets 

and prevalence of missing data. Many procedures in spectral analysis, for example, assume 

that data are evenly spaced. Some example of data analysis methods include: singular 

spectrum analysis, Fourier analysis, wavelet analysis, regression analysis, and correlation 

analysis. In the time domain, statistical tools often seek relationships between two time 

series. One assumption of many time domain statistical tools is stationarity, meaning that 
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statistical moments, such as first- and second-order moments, of a time series are time-

independent. In practical applications, the inappropriate application of the methods may 

result in misleading results. Another problem with time domain statistics is that many 

climatic time series have characteristic time scales and therefore establishing relationships 

between time series at all timescales simultaneously could be misleading. One way to 

circumvent the problem is to smooth time series, reducing noise and allowing statistical 

relationships to emerge. The approach, however, is subjective; one must choose the degree 

to which the time series are smoothed. A more objective approach is Fourier analysis, 

which decomposes time series into frequency components. The frequency decomposition 

allows characteristic time scales to be extracted and also the strength of the relationship 

between two time series to be assessed at different frequencies. The main assumption of 

Fourier analysis is stationarity, which limits its application. Other problems include finding 

an appropriate data taper to minimize spectral leakage, bias, and variance of the spectral 

estimate. Problems associated with Fourier analysis can be remedied by using wavelet 

analysis. In wavelet analysis, the assumption of stationarity is relaxed and thus the method 

provides more flexibility in its application. An additional benefit is that the window width, 

unlike in short-time Fourier analysis, is not fixed, maximizing resolution at low-

frequencies. One can also detect nonstationary relationships between two time series at 

different frequencies, making wavelet analysis for climate studies particularly useful.  

 A singular implementation of wavelet analysis, however, is inadequate for feature 

extraction of geophysical time series. For example, red-noise, a typical null hypothesis 

against which climatic time series are often tested, can produce large spectral power. To 

facilitate the interpretation of results from wavelet analysis, statistical methods have been 

developed, the first of which is pointwise significance testing (Torrence and Compo, 1998). 

In a pointwise significance test, results at each frequency and time are tested against a 

suitable null hypothesis with the assumption that all wavelet coefficients are independent. 

The application of the procedure yields subsets of the wavelet domain containing elements 

whose likelihood of being generated by noise is less than those not contained in the subsets. 

This procedure was found by Maraun et al. (2007) to be problematic for two reasons: (1) 

wavelet coefficients are not independent and (2) the number of wavelet coefficient to which 

the test is applied can be very large, resulting in numerous spurious results. Addressing the 



3 
 

limitations of the pointwise significance test, Maraun et al. (2007) developed an areawise 

test to dramatically reduce the spurious results. While the test is a great improvement from 

the pointwise test, its practical application is limited by computational inflexibility. The 

application of the test requires the calculation of a new critical level for different analyzing 

wavelets and pointwise significance levels.  

The application of standard wavelet analysis, in some cases, may be inadequate for 

feature extraction of time series. This inadequacy is found analogously in the time domain, 

where the mean and variance can only partially explain the distribution of time series for 

non-normally distributed data. In such cases, it is useful to look at high-order moments 

such as skewness and kurtosis. In the frequency domain, by analogy, one computes the 

bispectra of time series to determine what frequency components are contributing to the 

third-order moment of the time series. The sunspot cycle and the quasi-biennial oscillation 

(QBO) are both examples of nonlinear geophysical phenomena and thus high-order 

spectral analysis is needed to more fully understand these time series (Moussas et al., 2005; 

Rusu, 2007; Lu et al., 2009).  

The highly populated Northeast US is home to Hudson River, Delaware River, 

Chesapeake Bay estuaries, three large estuaries of economic, industrial, recreational 

importance, which help bolster the very populated metropolitan region. The Delaware 

River estuary, for example, contains the largest freshwater seaport in the world, which is 

situated in Philadelphia. The Delaware River estuary also contains important shipping 

channels through which commodities are transported. Additional industrial uses of the 

estuaries are the cooling of power plants provided that the water is not saline. The three 

estuaries also support local economies through fishing.  

The Northeast US is a region that exemplifies societal impacts of droughts. In the 

1960s, a severe drought afflicted the highly populated region and created conflicts between 

New York City and Philadelphia. As a result of the 1960s drought, the water diverted to 

New York City from the upper Delaware River watershed is now regulated and limited by 

the downstream flow conditions. The reason for the regulation is that low flow conditions 

near Philadelphia will allow saline water to intrude into the Philadelphia water supply. The 

impact of the drought has led many researchers to investigate its causes. For example, Ning 
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and Bradley (2015) found the 1960s drought to be related to El-Niño/Southern Oscillation 

(ENSO), which implies that such events may be predictable. In contrast, Seager et al. 

(2012) found, using climate models, that the drought was the result of intrinsic atmospheric 

variability, rendering future droughts impossible to predict. The contrasting results merit 

an additional investigation and thus the goal of the dissertation is to determine mechanisms 

governing historical streamflow variability in the mid-Atlantic region.  

To achieve the goal, it will be necessary to implement wavelet analysis and develop 

new statistical tests to assess the confidence in the results. The new statistical tests will 

improve on the pointwise significance test. Wavelet analysis was adopted by Labat (2008) 

and Whitney (2010) for their investigations of mid-Atlantic streamflow variability. While 

Whitney (2010) detected significant variability in Susquehanna streamflow at a period of 

26 years, the variability was not linked to physical mechanisms. On the other hand, the 

cross-wavelet analysis by Labat (2004) determined that North American continental 

freshwater discharge was related to ENSO at a period of 22 years. One deficiency of the 

aforementioned studies is a lack of rigorous statistical significance testing; only pointwise 

significance testing was applied in the studies. Therefore, it will be necessary to 

development tools in wavelet analysis to gain more confidence in the results.  

The three main unanswered questions that will be addressed in the dissertation are 

the following: 

1) Can new statistical procedures in wavelet analysis be developed that improve 

upon existing methods? 

2) Did mid-Atlantic streamflow time series contain characteristic time scales?  

3) Did climate modes have impacts on historical streamflow variability and what 

time scales were their influences the strongest?  

Question (1) will be addressed by using ideas from geometry, topology, and existing 

methodologies. Question (2) will be addressed using wavelet analysis together with new 

significance testing procedures. Question (3) will be addressed using correlation, wavelet, 

and composite analyses.  
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1.2 Dissertation Overview  

In this work, new and existing procedures in wavelet analysis will be used to 

understand historical hydroclimate variability in the mid-Atlantic region of the US. In 

particular, in Chapter 2 a new geometric significance test and topological methods are 

developed to remedy the problem with existing statistical procedures. In Chapter 3, a more 

flexible and powerful cumulative areawise test is constructed and applied to well-known 

geophysical time series. High-order wavelet methods are developed in Chapter 4 and are 

applied to the QBO time series. Chapter 5 will consist of a wavelet coherence analysis that 

will relate climate modes to streamflow at an array of timescales. Salinity and streamflow 

variability are investigated in Chapter 6 and linked to prevailing atmospheric conditions. 

Chapter 7 will include additional applications of wavelet analysis to streamflow time series. 

Concluding remarks and a discussion are provided in Chapter 8.  

Chapter 2 contains work published in Nonlinear Processes in Geophysics (Schulte 

et al., 2015) that was co-authored by C. Duffy and R. Najjar. Material in Chapter 3 was 

published as a discussion paper in Nonlinear Processes in Geophysics Discussions and is 

currently under review. The results presented in Chapter 4 have been prepared as a 

manuscript and will be submitted in the near future. Chapter 5 contains work that was 

submitted to the Journal of Hydrology: Regional Studies and the co-authors of the paper 

are R. Najjar and M. Li. A manuscript co-authored with R. Najjar and S. Lee containing 

the results in Chapter 6 is currently under preparation and will be submitted in the near 

future. The results in Chapter 7 will likely be part of another manuscript.  
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Chapter 2 

Geometric and Topological Approaches to Significance 

Testing in Wavelet Analysis 

2.1 Introduction  

Time series are often complex, composed of oscillations and trends. The goal of 

researchers is to decide whether the embedded structures in the time series are stochastic 

or deterministic. Such decisions can be made using Fourier analysis, with the assumption 

that the underlying time series is stationary (Jenkins and Watts, 1968). In many cases, 

however, the stationary assumption is not satisfied, making Fourier analysis an 

inappropriate tool for feature extraction. For non-stationary time series, wavelet analysis 

(Meyers, 1993; Torrence and Compo, 1998) can be used for decomposing a time series 

into both frequency and time components, allowing the extraction of transient features and 

dominant modes of variability. Once embedded structures in time series have been 

identified, a natural question arises: what physical mechanisms are responsible for the 

detected modes of variability? Linkages between the modes of variability and possible 

physical mechanisms can be obtained using wavelet coherence (Grinsted et al., 2004), a 

bivariate tool for detecting common oscillations between two time series. Together, 

wavelet power and coherence analyses have proven useful in climate science (Velasco and 

Mendoza, 2007; Muller et al., 2008), hydrology (Zhang et al., 2006; Ozger et al., 2009; 

Labat, 2008; Labat, 2010), atmospheric science (Terradellas et al., 2005; Schimanke et al., 

2011), and oceanography (Lee and Lwiza, 2008).  

The application of wavelet analysis alone is not sufficient for feature extraction of time 

series; indeed, random fluctuations can produce large values of spectral power or coherence 

related to the underlying process (e.g., red-noise) and not necessarily the time series. In 

Fourier analysis, one chooses a suitable noise model and assesses the significance of 

features relative to some analytically or empirically derived threshold. In climate science, 

for example, one often compares the sample power spectrum of a time series to that of a 

theoretical red-noise spectrum (Hasselman, 1976; Torrence and Compo, 1998). Statistical 
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significance testing is also necessary in the wavelet domain. Torrence and Compo (1998) 

were the first to assess the significance of features in wavelet power spectra using discrete 

red-noise background spectra. Grinsted et al. (2004), using Monte Carlo methods, extended 

significance testing to wavelet coherence using surrogate red-noise time series. The 

(pointwise) significance tests developed by Torrence and Compo (2010) and Grinsted et 

al. (2004), however, have multiple-testing problems, given the large number of wavelet 

coefficients being tested simultaneously (Maraun and Kurths, 2004). Suppose, for 

example, that a pointwise significance test was applied to M wavelet power coefficients at 

the 5% significance level. Then, on average, there will be 0.05M false positive results, 

which would make the pointwise test permissive for large M. Maraun et al. (2007) 

addressed these problems by developing an areawise test that sorts through contiguous 

regions of pointwise significance called significance patches based on their area and 

geometry, minimizing spurious results, and thus giving researchers more insight into the 

time series in question. According to the areawise test, the larger the pointwise significance 

patch, the less likely it was generated from a stochastic fluctuation.    

In this study, significance testing in the wavelet domain is improved through the 

following: (1) the development of a flexible and computationally efficient geometric test 

capable of minimizing spurious results from the pointwise test by associating p-values to 

individual patches in wavelet-power and wavelet-coherence spectra; and (2) the application 

of topological methods that can further distinguish spurious patches from true structures 

that can reveal information about time series undetected by current methods. Given the 

deficiencies of pointwise significance testing, there is a need to improve current methods 

of evaluating significance of features in the wavelet domain. The areawise test, though a 

substantial improvement from the pointwise test has one drawback:  finding the 

significance level of the areawise test requires a complicated root-finding algorithm, 

making p-values for the areawise test difficult to obtain, as it would require the repeated 

application of a root-finding algorithm (see Sect. 4.1 for details).  

The remainder of the paper is organized as follows. A brief overview of wavelet 

analysis is presented in Sect. 2.2. In Sect. 2.3, the pointwise and areawise tests are discussed 

briefly. The development of the geometric test is presented in Sect. 2.4. In Sect. 2.5, ideas 
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inspired by persistence homology (Edelsbrunner, 2010) are used to show that holes, voids 

of pointwise significance surrounded by regions of pointwise significance, can distinguish 

important structures from trivial structures, linking the geometric and topological tests. 

Using ideas from Sect. 2.4 and Sect. 2.5, the application of a local geometric test is 

presented in Sect. 2 6. The new methods are applied to time series of two idealized cases, 

which provide important benchmarks for the methods, and to indices of two prominent 

climate modes, El Niño/Southern Oscillation and the North Atlantic Oscillation (NAO), to 

illustrate, in a geophysical setting, the insights afforded by the methods. 

2.2 Definitions 

In wavelet analysis, a time series is decomposed into frequency and time components 

by convolving the time series with a wavelet function satisfying certain conditions. There 

are many different kinds of wavelet functions but the most widely used is the Morlet 

wavelet, a sine wave damped by a Gaussian envelope expressed as   

𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                               (2.1) 

where 𝜓0 is the Morlet wavelet, 𝜔0 is the dimensionless frequency, and 𝜂 = 𝑠 ⋅ 𝑡, where s 

is the wavelet scale, and t is time (Torrence and Compo, 1998; Grinsted et al., 2004). The 

wavelet transform of a discrete time series 𝑥𝑛 (n = 1, ..., N)  is given by 

 𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                       (2.2)     

where 𝛿𝑡 is a uniform time step determined from the time series and |𝑊𝑛
𝑋(𝑠)|2 is the 

wavelet power of a time series at scale s and time index n (Torrence and Compo, 1998; 

Grinsted et al., 2004). Note that for the Morlet wavelet with 𝜔0 = 6 the wavelet scale and 

the Fourier period 𝜆 are approximately equal (𝜆 ≈ 1.03𝑠).  

2.3. Existing Significance Testing Methods 

2.3.1 Pointwise Significance Testing 
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For climatic time series, the significance of wavelet power can be tested against a 

theoretical red-noise background (Torrence and Compo, 1998). For a first-order 

autoregressive (Markov) process  

𝑋𝑛 =  𝛼𝑋𝑛−1 + 𝑤𝑛                                                        (2.3) 

with lag-1 autocorrelation coefficient 𝛼, Gaussian white noise 𝑤𝑛, and 𝑋0 = 0, the 

normalized theoretical red-noise power spectrum is given by  

𝑃𝑓 =  
1− 𝛼2

1+ 𝛼2−2𝛼 cos(2𝜋𝑓 𝑁⁄ )
,                                               (2.4) 

where f = 0,…, N/2 is the frequency index (Gilman et al., 1963). To obtain, for example, 

the 5% pointwise significance level one must multiply Eq. (2.4) by the 95% percentile of 

a chi-square distribution with two degrees of freedom and divide the result by 2 to remove 

the degree of freedom factor (Torrence and Compo, 1998).  The discrete Fourier red-noise 

spectrum has been shown by Torrence and Compo (1998) to be adequate in estimating the 

significance of local wavelet power and is thus used in this paper to estimate pointwise 

significance. The parameter 𝛼 can be estimated using standards methods such as the Burg’s 

and the Yule-Walker methods (Kay, 1988; Hayes, 1996).   

 Monthly time series and normalized wavelet power spectra for the NAO index 

(Hurrell et al., 1995, https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-

oscillation-nao-index-station-based) and the Niño 3.4 index (Trenberth 1997, 

http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html) are shown in 

Figs. 2.1 and 2.2. The Niño 3.4 index data were converted to anomalies by subtracting the 

mean monthly values for each month from the monthly values. Note that the normalized 

wavelet power is the wavelet power at every time and period divided by the variance of the 

time series, which allows different wavelet power spectra to be readily compared. Another 

important feature of the wavelet power spectrum is the cone of influence, the region in 

which edge effects become important, or more precisely, the e-folding time of the 

autocorrelation for wavelet power at each scale, where the e-folding time is defined by 

Torrence and Compo (1998) as the point at which the wavelet power for a discontinuity at 

the edge drops by a factor of 𝑒−2. The wavelet power spectrum of the NAO index reveals 

numerous time periods of enhanced variance at an array of time scales, though no preferred 

http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html
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timescale is evident. For the Niño 3.4 index, the wavelet power spectrum detects 

statistically significant variance in the 16-64 month period band for the period 1960-2010. 

Another interesting feature emerges (labeled H in Fig. 2.2b): regions of no pointwise  

 

Figure 2.1. (a) The NAO index from 1870 to 2013. (b) The normalized wavelet power spectrum of the NAO 

index. Thick contours enclose regions of 5% pointwise significance. Light shading corresponds to the cone 

of influence, the region in which edge effects become important. 

 

Figure 2.2.  (a) The Niño 3.4 index time series from 1870 to 2013. Points labeled M indicate where the 

merging process occurred and points labeled H indicate where a hole was formed (see Sect. 2.5.2 for details). 

(b) Same as Fig. 2.1b except for the Niño 3.4 index for the period 1870-2013. H together with the arrow 

marks the location of a hole. 
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significance surrounded by regions of pointwise significance. These “holes” will turn out 

to be important structures in wavelet power spectra and are discussed thoroughly in Sect. 

5.  

2.3.2 Areawise Significance Testing 

The idea behind the Maraun et al. (2007) areawise test (hereafter simply the 

“areawise test”) is that correlations between adjacent wavelet coefficients arising from the 

reproducing kernel (see Appendix A) produce continuous regions of pointwise significance 

that resemble the reproducing kernel. The reproducing kernel for a given analyzing wavelet 

represents the time-scale uncertainty, which is related to the scale and time localization 

properties of the analyzing wavelet. Let (t, s) denote the location of a wavelet coefficient 

at scale s and time t. The correlation, C(t, s, 𝑡′, 𝑠′), between any two wavelet coefficients 

located at (t, s) and (𝑡′, 𝑠′) obtained from the wavelet transformation of a Gaussian white 

process is given by the reproducing kernel moved to  t and stretched to s (Maraun et al., 

2007), i.e.   

𝐶(𝑡, 𝑠, 𝑡′, 𝑠′) =  √
2𝑠′𝑠

(𝑠′)2 +  𝑠2
exp {𝑖𝜔0

𝑠′ + 𝑠

(𝑠′)2 + 𝑠2
(𝑡′ − 𝑡)}  

× exp {−
1

2

(𝑡′−𝑡)
2

+ 𝜔0
2(𝑠′−𝑠)

2

(𝑠′)2+ 𝑠2 }                                           (2.5) 

(Maraun and Kurths, 2004). Thus, for significance patches generated from random 

fluctuations, the typical patch area is the area of the reproducing kernel. The test can be 

described more formally as follows: Let 𝑃𝑝𝑤 be the set of all pointwise significance values 

and define a critical area 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠) as the subset of the time-scale domain for which the 

reproducing kernel K (corresponding to the analyzing wavelet), dilated and translated to 

time t and scale s, exceeds the threshold of a critical level 𝐾𝑐𝑟𝑖𝑡. Mathematically, 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠) 

is given by 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠) =  {(𝑡′, 𝑠′): 𝐾(𝑡, 𝑠; 𝑡′, 𝑠′) > 𝐾𝑐𝑟𝑖𝑡}.                                     (2.6) 

It is noted that critical area of the areawise test is not area of significance patches 

but the area of the reproducing kernel at some critical level and at some scale. For a patch 
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of pointwise significant values, a point inside the patch is said to be areawise significant 

if the reproducing kernel dilated according to the scale in question entirely fits into the 

patch, i.e.  

𝑃𝑎𝑤 =  ⋃ 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠)𝑃𝑐𝑟𝑖𝑡(𝑡,𝑠)⊂𝑃𝑝𝑤
,                                                (2.7) 

where 𝑃𝑎𝑤 is the subset of pointwise significant values consisting of additionally areawise 

significant wavelet power coefficients. According to the areawise test, entire significance 

patches need not be areawise significant, just portions or subsets of them. That is, it is only 

those points that fit inside the kernel that are deemed areawise significant.  The critical area 

is related to significance level of the areawise test by the following equation: 

1 − 𝛼𝑎𝑤 = 1 − 〈
𝐴𝑎𝑤

𝐴𝑝𝑤
〉,                                                          (2.8) 

where 1 − 𝛼𝑎𝑤 is the significance level of the areawise test, 𝐴𝑎𝑤 is the area of the areawise 

significance patch, 𝐴𝑝𝑤 is the area of the pointwise significance patch, and 〈
𝐴𝑎𝑤

𝐴𝑝𝑤
〉 is the 

average ratio between the areas of area wise-significant patches and pointwise significance 

patches. It turns out that the calculation of 𝛼𝑎𝑤 is non-trivial, involving a root-finding 

algorithm that solves the equation 𝑓(𝑃𝑐𝑟𝑖𝑡) −  𝛼𝑎𝑤 = 0 (see Sect. 2.4). 

To illustrate the importance of the areawise significance test, the test was applied to the 

wavelet power spectra of the NAO and Niño 3.4 index time series (Figs. 2.3 and 2.4). 

Numerous 5% pointwise significance patches in the Niño 3.4 wavelet power spectrum were 

found to contain areawise-significant subsets, suggesting that these patches were less likely 

to be an artifact of multiple testing. For example, as indicated by the thick red contours, 

there are three areawise-significant regions located at a period of approximately 48 months, 

one at 1890, one at 1905, and a third one at 1985. Many more areawise-significant regions 

were identified at periods less than 8 months, especially before 1955. The wavelet power 

spectrum of the NAO index also contained pointwise significance patches with areawise-

significant subsets, all at periods less than 8 months. However, it will be shown in Sect. 

2.4 that they all may be artifacts of multiple testing, resulting from the large number of 

patches to which the areawise test was applied.  
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Figure 2.3. Significance of wavelet power for the NAO index mean monthly values for the period 1870-2013. 

Black contours enclose regions of 5% pointwise significance (see Sect. 2.3.1) and thick red contours are the 

5% areawise-significant subsets (see Sect. 2.3.2). Light gray shading indicates those 5% pointwise 

significance patches that are geometrically significant at the q = 0.05 level and dark gray shading indicates 

  

 

Figure 2.4. Same as Fig. 2.3 but for the Niño 3.4 for the period 1870-2013. The blue curve represents a closed 

path 𝑓 that is not contractible to a point because it surrounds a hole (see Sect. 2.5.1 and Fig. 2.2). 
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2.4 Geometric Significance Testing 

2.4.1 Development  

A disadvantage of the areawise test is the complexity of the 𝛼𝑎𝑤 calculation, which 

involves a root-finding algorithm. It is therefore desirable to construct an alternative test 

whose significance level is easy to calculate, readily allowing the following: (1) the 

application of the test to patches at various pointwise significance levels; (2) the 

adjustments of the significance level of the test; (3) the application of the test to wavelet 

power spectra obtained using other analyzing wavelets; and (4) the implementation of p–

value adjustment procedures to control the family-wise error rates and false discovery rates. 

The development of a geometric significance test will require ideas from basic 

geometry and set theory. In wavelet analysis, the wavelet power is computed at a discrete 

set of time coordinates 𝑇 with elements 𝑡𝑖 for 𝑖 =  1, … , 𝑁 and at a discrete set of scales 𝑆 

whose elements 𝑠𝑗 (j =1,…,J) are given by 

𝑠𝑗 =  𝑠𝑚𝑖𝑛2𝑗𝛿𝑗                                                           (2.9) 

and 

J = 𝛿𝑗−1𝑙𝑜𝑔2 (
𝑁𝛿𝑡

𝑠𝑚𝑖𝑛
),                                                   (2.10) 

with 𝛿𝑡 a time step and 𝑠𝑚𝑖𝑛 the smallest resolvable scale (Torrence and Compo, 1998). 

Note that the maximum value of 𝛿𝑗 for which adequate sampling can be achieved depends 

on the wavelet function, being approximately equal to 0.5 for the Morlet wavelet. For the 

geometric test, a patch will be considered to be a polygon with vertices 𝑣𝑘 =  (𝑥𝑘, 𝑦𝑘) for 

k = 0,…, m-1, where 𝑥𝑘 and 𝑦𝑘 are, respectively, elements from T and S and m-1 is the 

number of vertices. It is worth noting that not all patches are closed in the sense that some 

are located near the edges of the wavelet domain. To remedy this problem, semi-enclosed 

patches are artificially closed by connecting the two vertices located on the boundary of 

the wavelet domain with a line segment.  
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Perhaps the most fundamental property of a pointwise significance patch is its area, 

which can be calculated using the following special case of Green’s Theorem (Appendix 

C):  

A = 
1

2
|∑ (𝑥𝑘

𝑚−1
𝑘=0 𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘)|,                                                      (2.11) 

where 𝑦0 = 𝑦𝑚 , 𝑥0 = 𝑥𝑚 (Worboys and Duckham, 2004).   For significance patches 

containing holes, the total area of the holes is subtracted from the area the significance 

patch would have if it did not contain the holes.  

What will be of particular interest is the normalized area of a significance patch, 

not its absolute area. To compute the normalized area, the centroid of a significance patch 

will need to be calculated using the following formulas (Worboys and Duckham, 2004):   

𝐶𝑡 =  
1

6𝐴
∑ (𝑥𝑘 +  𝑦𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 − 𝑥𝑘+1𝑦𝑘)                                      (2.12) 

and 

𝐶𝑠 =  
1

6𝐴
∑ (𝑦𝑘 +  𝑥𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘),                                     (2.13) 

where 𝐶𝑡 and 𝐶𝑠 are the time and scale coordinates, respectively, of the centroid. Recall 

that the centroid is the area-weighted location of a polygon. If 𝐴𝑅 is the area of the 

reproducing kernel dilated or contracted (at a certain critical level) to (𝐶𝑡,𝐶𝑠), then the 

normalized area of a significance patch is given by  

𝐴𝑛 = 
𝐴

𝐴𝑅
,                                                                 (2.14) 

and allows one to compare sizes of significance patches across all scales simultaneously. 

Two idealized pointwise significance patches with equal normalized area are shown in 

Figs. 2.5a and 2.5b.  

The idea of the geometric significance test is to generate a null distribution of 𝐴𝑛 

and use the null distribution to compute the significance of patches in the wavelet domain. 

In climate science, a suitable null hypothesis is red-noise so that 𝐴𝑛 will be computed for 

a large ensemble of patches generated from red-noise processes. Using the null distribution 

of 𝐴𝑛, one can assign to each patch in the wavelet domain a probability p that the patch 
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was not generated from a random stochastic fluctuation. It is noted that the null distribution 

of 𝐴𝑛 depends on the choice of null hypothesis (not shown), with, for red-noise processes, 

𝐴𝑛 increasing with increasing

lag-1 autocorrelation coefficients.  

 

Figure 2.5. (a) An idealized convex pointwise significance patch whose boundary is indicated by the black 

contour and whose centroid is indicated by the black dot. For reference, the reproducing kernel associated 

with the areawise test is shown, which is indicated by gray shading. In this case, the reproducing kernel lies 

entirely inside the patch. The convexity, normalized area, and χ are displayed on the bottom left corner. (b) 

Same as (a) except the area of the convex hull (red curve) is not equal to the area of the patch and the 

reproducing kernel is unable to fit entirely inside the patch. 

The calculation of the geometric significance level 1 − 𝛼𝑔, unlike the calculation 

of  1 − 𝛼𝑎𝑤, is straightforward: for the areawise test one needs to compute 𝛼𝑎𝑤 as a 

function of 𝑃𝑐𝑟𝑖𝑡, whereas for the geometric test 𝛼𝑔 is no longer a function 𝑃𝑐𝑟𝑖𝑡. Moreover, 

the estimation of 𝑃𝑐𝑟𝑖𝑡 involves a root-finding algorithm that solves the equation 𝑓(𝑃𝑐𝑟𝑖𝑡) −

 𝛼𝑎𝑤 = 0, where 𝑓(𝑃𝑐𝑟𝑖𝑡) is estimated using Monte Carlo simulations. Thus, the 

application of the areawise test to pointwise significance patches for M different values of 

𝛼𝑎𝑤 would require M Monte Carlo ensembles, making p-values for the test difficult to 

obtain. For the geometric test, only a single Monte Carlo ensemble is needed, as a single 

choice of 𝑃𝑐𝑟𝑖𝑡 is needed to generate a null distribution, from which any desired value of 
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𝛼𝑔 can be obtained. In fact, while the choice of 𝑃𝑐𝑟𝑖𝑡 impacts the mean value of the null 

distribution, the geometric significance of a significance patch is left unchanged, as the 

significance is relative to a distribution of 𝜒 under some noise model (Appendix B).  

The elimination of the 𝑃𝑐𝑟𝑖𝑡 dependence from the calculation of the geometric 

significance level allows the geometric test to be readily performed on patches of various 

pointwise significance levels. For the areawise test, a new 𝑃𝑐𝑟𝑖𝑡 must be estimated for each 

pointwise significance level since 𝐴𝑝𝑤, on average, will change depending on if the 

pointwise significance level 1 − 𝛼𝑝 is increased (patches shrink) or is decreased (patches 

grow). For the geometric test, there is no need to find a new 𝑃𝑐𝑟𝑖𝑡 —simply compute a new 

null distribution based solely on the information of the pointwise significance patches at 

some pointwise significance level 1 − 𝛼𝑝.  

Another advantage of eliminating the 𝑃𝑐𝑟𝑖𝑡 dependence is that the geometric test 

can be readily applied to wavelet coherence, partial wavelet coherence (Ng and Chan, 

2012), multiple wavelet coherence, and cross-wavelet spectra. The application of the 

geometric test to significance patches in the aforementioned wavelet spectra only requires 

a single Monte Carlo ensemble to generate a null distribution, eliminating the calculation 

of a new 𝑃𝑐𝑟𝑖𝑡 for each wavelet spectra and for each value of 𝛼𝑔. For the areawise test, a 

new 𝑃𝑐𝑟𝑖𝑡 must be estimated for each value of 𝛼𝑎𝑤 and for each wavelet spectra, making 

the areawise test difficult to implement in practical applications.  

It may happen that a pointwise significance patch is so large that individual 

oscillations embedded in the patch cannot be detected by the geometric test. However, 

there are two solutions to this localization problem: the first solution is to increase the 

significance level of the pointwise test, allowing large patches to separate, and then perform 

the geometric test on the smaller patches. The second solution is to examine other 

properties of significance patches that may indicate the presence of multiple periodicities 

that form large significance patches from the merging of several smaller patches. The 

second solution will be addressed thoroughly in Sect. 5.  

Another situation that may arise in practice is the application of the geometric test 

to patches located both inside and outside the cone of influence (COI). In the case of the 
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pointwise significance test, the edge effects only influence those wavelet power 

coefficients that lie inside the COI; however, for the geometric test, the significance of the 

entire patch will be impacted even if the patch only partially lies inside the COI. The reason 

is that the COI will act to decrease the size of significance patches through the reduction 

of wavelet power in the COI and subsequently the total area of the patch. One should thus 

be cautious when interpreting the results of the geometric test for patches near the COI. 

2.4.2 Multiple Testing 

If the geometric test was performed on K significance patches at the 𝛼𝑔𝑒𝑜 level, 

then, on average, one can expect 𝛼𝑔𝑒𝑜K false positive results, which would make the 

geometric test permissive for large K. It is therefore necessary to reduce the number of 

false positive results. There are various ways to reduce the number of false positives, 

including the Walker test, Bonferroni correction, and other counting procedures (Wilks, 

2006). Recently, methods for controlling the false discovery rate (FDR) have been 

developed, where the FDR is the expected proportion of rejected local null hypotheses that 

are actually true (Benjamini and Hochberg, 1995). In particular, Benjamini and Hochberg 

(1995) developed a method for controlling the FDR based on the number of local 

hypotheses being tested and the degree to which the local hypotheses were rejected, 

contrasting with other procedures that ignore the confidence with which the local tests 

reject the local hypotheses (Wilks, 2006). Moreover, the method has proven to have high 

statistical power, especially when only a small fraction of the K local tests correspond to 

false null hypotheses (Wilks, 2006). The procedure will therefore be used to control the 

false discovery rate of the geometric test, which will facilitate the interpretation of results. 

Suppose that K local hypotheses were tested, where, in the present case, the local 

hypotheses refer to the testing of each patch individually under the assumption that the 

results of the individual tests are independent. A global geometric test can be performed at 

the 𝛼𝑔𝑙𝑜𝑏𝑎𝑙 level as follows: Let 𝑝(𝑙) denote the lth smallest of K local p-values; then, under 

the assumption that the K local tests are independent, the FDR can be controlled at the q-

level by rejecting those local tests for which 𝑝(𝑙) is no greater than 

𝑝𝐹𝐷𝑅= max
𝑟=1,…,𝐾

[𝑝(𝑟): 𝑝(𝑟) ≤ 𝑞(𝑟 𝐾⁄ )]                                     (2.15) 
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max
𝑟=1,…,𝐾

[𝑝(𝑟): 𝑝(𝑟) ≤ 𝛼𝑔𝑙𝑜𝑏𝑎𝑙(𝑟 𝐾⁄ )]                                       (2.16) 

so that the FDR level is equivalent to the global test level. According to the procedure, any 

local test resulting in a p-value less than or equal to the largest p-value for which Eq. (2.16) 

is satisfied is deemed significant. If no such local p-values exist, then none are deemed 

significant and, therefore, the global test hypothesis cannot be rejected. The global 

geometric test will thus only deem those significant patches with p-values satisfying Eq. 

(16) as significant. Throughout the paper 𝑞 =  𝛼𝑔𝑙𝑜𝑏𝑎𝑙 will be set to 0.05. 

2.4.3 Comparisons with the Areawise Test 

With a formal geometric significance test now developed, it is useful to compare 

the areawise and geometric significance tests, where comparisons will be made using an 

empirically derived quantity. Let 𝑁𝑠𝑖𝑔 be the number of pointwise significance patches in 

a given wavelet power spectrum, 𝑁𝑎 the number of patches containing an areawise-

significant region, 𝑁𝑔 the number of geometrically significance patches, and 𝑁𝑎𝑔 the 

number patches that are both geometrically significant and that contain areawise-

significant regions. The quantity  

𝐼𝑠𝑖𝑚 =  
𝑁𝑠𝑖𝑔− 𝑁𝑎− 𝑁𝑔+2𝑁𝑎𝑔

𝑁𝑠𝑖𝑔
                                                   (2.17) 

then measures the similarity between the two tests. The interpretation of 𝐼𝑠𝑖𝑚 is as follows: 

if 𝐼𝑠𝑖𝑚 = 1 then all patches containing areawise-significant regions are also geometrically 

significant and all patches which do not contain areawise-significant regions are also not 

geometrically significant. On the other hand, for values of 𝐼𝑠𝑖𝑚 less than 1 some patches 

containing areawise-significant regions may not be geometrically significant, with the 

converse also being true.  

To better compare the similarity between the two tests, distributions of 𝐼𝑠𝑖𝑚 were 

constructed by generating 1000 synthetic wavelet power spectra of red-noise processes 

with fixed autocorrelation coefficients and length N = 1000 (arbitrary units) and computing 

𝐼𝑠𝑖𝑚 for each of the synthetic wavelet power spectra. The experiment was performed for 

red-noise processes with different lag-1 autocorrelation coefficients to determine if  𝐼𝑠𝑖𝑚 

depends on the AR1 model.  The results are shown Fig. 2.6a. With a mean value of 0.90, a 
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strong agreement was found between the areawise and geometric tests, differences arising 

from the fact that the areawise test is a local test, finding significant regions within patches, 

whereas the geometric test assigns a significance value to entire patches (see discussion 

below). Since 𝐼𝑠𝑖𝑚 was often less than 1.0, some patches containing areawise-significant 

regions were not found to be geometrically significant, and, conversely, some patches were 

geometrically significant without containing areawise-significant regions.  

 

Figure 2.6. (a) Similarity index between the geometric and areawise tests for different lag-1 autocorrelation 

coefficients for red-noise processes (see text). (b) Same as (a) except for the ratio between the false positive 

results of the geometric and areawise tests. The dotted black line represents the ratio of false positive between 

the two tests when the false discovery rate of the geometric test is controlled at the 0.05 level. (c) Same as 

(a) but for the mean convexity of 5% pointwise significance patches that are geometrically significant at the 

5% level and for the mean convexity of 5% pointwise significance patches that are areawise significant at 

the 5% level.  

The quantity 𝑟𝑛𝑒𝑔 =  𝑁𝑔 𝑁𝑎⁄ , which measures the ratio of false positive results 

between both tests, was also computed for case when both the geometric and areawise test 

levels were set to 0.05 (Fig. 2.6b). In this case, the mean value of 𝑟𝑛𝑒𝑔 was found to range 

from 1.0 to 2 and the median value was found to be generally greater than 1.0, ranging 

from 1 to 1.8. No dependence on the lag-1 autocorrelation coefficients was identified. The 

results indicate that the geometric test is generally less conservative than the areawise test 

for a given wavelet power spectrum. The lack of conservativeness, however, can be 

remedied by controlling the FDR of the geometric test at the q = 0.05 level. Fig. 6b shows 
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𝑟𝑎𝑑𝑗, the ratio of false positive results between the areawise tests and the geometric test but 

with FDR controlled for the geometric test. As indicated in Fig. 2.6b, by controlling the 

FDR the geometric test is much more conservative than the areawise test, resulting in fewer 

false positive results, with a typical value of 𝑟𝑎𝑑𝑗 ranging from 0.02 to 0.05.  

To explain the differences between the areawise and geometric tests, it will be 

necessary to consider the convexity of a patch, the degree to which a polygon or point set 

lacks concavities. The reason for considering convexity is illustrated by considering the 

two significance patches shown Fig. 2.5, which have equal values of 𝐴𝑛 but different 

geometries: one is convex (i.e., has no concavities, Fig. 5a) and the other is not convex 

(Fig. 2.5b). Suppose that the areawise test was performed on the two patches at the 𝛼𝑎𝑤 

level. For the convex patch shown Fig. 2.5a, the reproducing kernel is capable of fitting 

entirely inside the patch but is unable to fit inside the non-convex patch as a result of the 

concavity. Thus, although having equal area, the two patches differ in their areawise 

significance, where the difference in significance is related to their geometry. Thus, 𝑝𝑎𝑤 =

𝑔(𝒞, 𝐴; 𝐻0) for some function g, where 𝑝𝑎𝑤 is the areawise test p-value associated with a 

patch calculated under the null hypothesis 𝐻0 and 𝒞 is the convexity of the patch, which is 

now formally defined.  

Rigorously, convexity is defined as follows:  Let x and y be any two points in a set 

Z; then the set Z is convex if for all t the line segment 

[x, y] = {𝑡𝑥 + (1 − 𝑡 )𝑦: 0 ≤ 𝑡 ≤ 1}                                         (2.18) 

is in Z (Ziegler, 1995). Equivalently, a set is convex if it contains any line segment joining 

any pair of points in Z. Under this definition, for example, patches with thin bridges as 

described by Maraun et al. (2007) are not convex.  

To quantify convexity, another idea from set theory, the convex hull, will be 

needed, which for a point set Z is defined as the intersection of all convex sets containing 

Z (Ziegler, 1995). In other words, it is the smallest convex set containing Z constructed 

from the intersection of all convex sets containing Z. Mathematically, the convex hull of a 

point set Z is expressed as 

conv(Z) = ⋂{𝑍′ ⊆ ℝ2: 𝑍 ⊆ 𝑍′, 𝑍′  convex}.                                    (2.19) 
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In practical applications, the convex hull of a set can be easily computed using existing 

algorithms (Barber et al., 1996). It is noted that all holes are ignored in the computation of 

the convex hull because the computation of the convex hull assumes that there are no holes 

in the polygon.  A patch containing a hole can never have a smallest convex set containing 

the set because holes allow line segments to leave the patch regardless of the size of the 

convex hull.  

A metric for convexity will now be defined using the area of a significance patch 

together with the area of its convex hull as follows: If 𝐴𝑘 is the area of the convex hull of 

a significance patch whose area is A, then the convexity is  

𝒞 =  
A

𝐴𝑘
,                                                                 (2.20) 

where 0 ≤ 𝒞 ≤ 1. High values of 𝒞 correspond to significance patches with relatively 

small concavities, whereas small values of 𝒞 correspond to patches with relatively large 

concavities, as in the case of significance patches with thin bridges.  

According to the areawise test, patches with smaller values of 𝒞 are less likely to 

be areawise significant so that it is expected that patches deemed significant by the areawise 

test will be primarily convex. To test this hypothesis, 10,000 patches arising from red-noise 

processes with different lag-1 autocorrelation coefficients were generated and the 

convexity of those patches deemed areawise significant at the 𝛼𝑎𝑤 = 0.05 level was 

calculated. The results in Fig. 2.6c show the mean convexity as a function of the lag-1 

autocorrelation coefficients, together with the 95% confidence bound. The mean convexity 

of the patches was found to be approximately 0.8, regardless of the lag-1 autocorrelation 

coefficient. An identical experiment was also performed for geometrically significant 

patches but with the convexity of patches that are geometrically significant at the 𝛼𝑔𝑒𝑜 =

0.05 being computed. In contrast to areawise-significant patches, patches that were found 

to be geometrically significant, on average, had lower convexity, the reason for which is 

that the calculation of 𝛼𝑔𝑒𝑜 makes no assumption about convexity. The p-value for the 

geometric test is thus 𝑝𝑔𝑒𝑜 =  𝑓(𝐴; 𝐻0 ) for some function f, contrasting with 𝑝𝑎𝑤 that 

depends on convexity. The results of the experiments are consistent with Figs. 2.5a and 
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2.5b, where both the ideal patches have the same geometric significance but the ideal patch 

in Fig. 2.5b has a larger 𝑝𝑎𝑤 so that  𝑝𝑎𝑤 > 𝑝𝑔𝑒𝑜 .  

Convexity cannot fully explain the differences between  𝑝𝑎𝑤 and 𝑝𝑔𝑒𝑜 for a given 

patch. More generally, 𝑝𝑎𝑤 = 𝑔(𝒞, 𝐴, 𝑆1, … , 𝑆𝑅; 𝐻0), where S1 to SR are shape parameters 

of the patch, such as aspect ratio and symmetry. Consider, for example, a convex patch 

whose length in the time direction is long with respect to the reproducing kernel (at some 

critical level) but thin in the scale direction with respect to the reproducing kernel. Such a 

patch would be deemed insignificant by the areawise test, though it may have an area much 

larger than the critical area of the areawise test. Asymmetry with respect to the scale axis, 

as another example, may also result in a patch being deemed insignificant by the areawise 

test if, for example, the width of the patch in the scale direction decreases with time. If the 

normalized areas of such patches are larger than the critical level of the geometric test, the 

patches will be geometrically significant, though may not be areawise significant if the 

reproducing kernel is unable to fit inside the narrow portion of the patch. The above 

arguments suggest that  𝑓(𝐴; 𝐻0 ) ≠ 𝑔(𝒞, 𝐴, 𝑆1, … , 𝑆𝑅; 𝐻0) and thus the significance of 

patches as determined by the geometric and areawise tests need not be equal. 

 

2.4.4 Geometric Significance Testing of Climatic Data 

For climatic time series, significance is often tested against a red-noise background and 

therefore it is reasonable to expect that the areawise and geometric tests behave similarly 

when applied to climatic time series. As such, the areawise and geometric tests were 

applied to the NAO and Niño 3.4 time series. For the wavelet power spectrum of the NAO 

index time series (see Fig. 2.3), not a single patch was found to be geometrically significant 

after controlling the FDR at the 0.05 level, suggesting the NAO index time series is 

composed of stochastic fluctuations. In fact, the NAO has already been shown to be 

consistent with a first-order Markov process (Feldstein, 2002). Recent work by Hanna et 

al. (2014) claimed that the NAO variability has increased over the past 30 years; however, 

the results from this analysis suggest that such changes cannot be distinguished from 

stochastic fluctuations, which could render difficult projections of future changes of the 

NAO. 
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The wavelet power spectrum of the Niño 3.4 index (see Fig. 2.4) was found to contain 

numerous geometrically significant patches in the period band 16-64 months, especially 

after 1960. The 5% pointwise significance patch extending from 1980 to 2000, as an 

example,  was found to be significant, as well as the patch centered at 2008.  The 

significance patch centered at 1985 and at a period of 32 months, however, is so large that 

individual oscillations could not be identified. To remedy the problem, the geometric 

significance was applied to 1% (𝛼𝑝 = 0.01) pointwise significance patches with q = 0.05, 

resulting in 1% pointwise significance patches at 1970, 1995, and 2007 being deemed 

significant, all of which also contained areawise-significant regions. Patches located at a 

period less than 8 months were also found to be geometrically significant, though only 

before 1955.   

2.5. Topological Significance Testing 

2.5.1 Topological Significance Testing of Ideal Time Series 

Topology is a branch of mathematics concerned with properties of spaces that remain 

unchanged after continuous deformations. So far only geometric aspects of significance 

patches have been discussed. Area of a significance patch, as an example, is a geometric 

property in the sense that stretching the patch in both the scale and time direction would 

increase its area. There are properties, however, that would be unaffected by stretching the 

significance patch. As a motivating example, consider the significance patches shown in 

Fig. 2. 4 corresponding to the wavelet power spectrum of the Niño 3.4 index (see Fig. 2.2), 

where there is a hole or void of pointwise significance located within a significance patch 

at 1985. This feature is topological, as the hole would remain under a continuous 

deformation such as stretching. A more formal definition of a hole will require some 

notions from topology. Let I = [0,1] be the closed unit interval. Then a path from a point a 

to a point b in a significance patch 𝑃 is a continuous function 𝑓: 𝐼 → 𝑃 with f(0) = a and 

f(1) = b, where in the case that f(0) = f(1) = c the path is said to be closed (Hatcher, 2002). 

Note that a point is a special kind of closed path called the constant path. A patch will be 

said to contain a hole if there exists a path in the significance patch such that it cannot be 

continuously deformed into a point, where the feature obstructing the path from such a 

deformation is a hole. The definition is consistent with notions of simply-connectedness in 
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topology (Hatcher, 2002). Figure 2.4 shows an example of a closed path (blue curve) in a 

patch that cannot be contracted to a point because it surrounds a hole located in the patch. 

For a patch with a hole, there will be two boundaries, an external boundary and an 

internal boundary representing the boundary between the hole and the patch. Thus, if a 

patch contains an internal boundary or contour it will contain a hole, whereas a patch 

without a hole will contain no internal contours. In practical applications, the existence of 

a hole can be determined by orienting external contours in the clockwise direction and 

internal contours in the counter-clockwise direction, a procedure automatically 

implemented by the Matlab contour routine. The number of counter-clockwise oriented 

contours is thus the number of holes in the wavelet power spectrum at a given pointwise 

significance level.  

To begin the topological analysis, the topology of time series with known structures 

will be analyzed. Given the importance of red-noise processes in the spectral analysis of 

climatic time series, the topology of patches generated from red-noise processes is first 

considered to determine if pointwise significance patches can be distinguished from those 

generated from red-noise processes solely based on their topology. To answer this question, 

10,000 wavelet power spectra of red-noise processes were generated and the number of 

holes (denoted by 𝑁ℎ hereafter) at a finite set of pointwise significance levels was 

computed for each wavelet power spectra (Fig. 2.7). It was found that 𝑁ℎ is not a random 

function of the pointwise significance level, as indicated by the 95% confidence bounds. 

Most importantly, for pointwise significance levels less than 10%, few patches contained 

holes, suggesting that holes are an uncommon feature of significance patches generated 

from red-noise processes (Table 2.1) and therefore can be used to distinguish spurious 

patches from important structures. It also noted that neither the shape nor the amplitude of 

the curve in Fig. 2.7 depends on the lag-1 autocorrelation coefficient of the red-noise 

process. Table 2.1 also suggests that patches containing more than a single hole are unlikely 

to be the result of red-noise, even for a modest pointwise significance level of 20%.  For 

pointwise significance levels of 1% and 5%, no more than a single hole was identified in a 
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given patch. 

 

Figure 2.7. Normalized mean number of holes as a function of pointwise significance level. The number of 

holes was calculated by generating 10,000 synthetic wavelet power spectra of red-noise processes with fixed 

autocorrelation coefficients of 0.5 and computing the number of holes Gray shading represents the 95% 

confidence interval. 

A simple algorithm for assessing the significance of holes is therefore developed. To 

find the significance of holes, plot the centroids of holes at a finite set of pointwise 

significance levels and project the centroids onto the wavelet domain, resulting in a 

topological wavelet diagram. The number of holes contained in a patch should also be 

computed, as patches with more holes are less likely to result from red-noise. In accordance 

with Fig. 2.7 and Table 2.1, regions in the wavelet domain where holes exist below the 

20% pointwise significance level will be considered regions with significant topological 

features.  

Table 2.1. Fraction of pointwise significance patches containing at least Nh holes as a function of the 

pointwise significance level calculated from an ensemble of 200,000 significance patches generated from 

red-noise processes with fixed autocorrelation coefficients equal to 0.5.  

Significance level (%) 𝑵𝒉 ≥ 𝟏 𝑵𝒉 ≥ 𝟐 𝑵𝒉 ≥ 𝟑 𝑵𝒉 ≥ 𝟒 

20  2.3 × 10−2  2.6 × 10−3  4.0 × 10−3 0 

15  1.0 × 10−2  5.0 × 10−3  1.0 × 10−3 0 
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10  2.0 × 10−3  1.0 × 10−3 0 0 

5  3.4 × 10−4 0 0 0 

1 0 0 0 0 

 

With a method for assessing the significance of holes, it is reasonable to analyze 

different ideal time series, both linear and nonlinear, to determine what types of time series 

produce holes in significance patches. Perhaps the simplest case is a single sinusoid with 

additive white noise (not shown), where the time series power spectrum in tested against a 

white-noise background spectrum. In this case, no evidence was found that a single sine 

wave, regardless of amplitude and signal-to-noise ratio, is capable of generating holes in 

5% pointwise significance patches. A similar experiment was repeated but the power 

spectra of the sine waves were tested against red-noise spectra. The results also indicated 

that a single sine wave is incapable of producing holes in 5% pointwise significance 

patches, implying holes arise from a richer structure embedded in time series. Thus, two 

more complex cases are considered.  

To derive the Case 1 time series, first consider the nonlinear system  

𝑋𝑜𝑢𝑡(𝑡) =   𝑏𝑋𝑖𝑛(𝑡) +  𝛾𝑋𝑖𝑛
2 (𝑡),                                             (2.21) 

where 𝑋𝑖𝑛(𝑡) is the input into the system, 𝑋𝑜𝑢𝑡(𝑡)  is the output of the system, b is a linear 

coefficient, and 𝛾 is a nonlinear coefficient. The output from this system will be 

quadratically phased coupled (King, 1996), where quadratic phase coupling indicates that 

for frequencies 𝑓1, 𝑓2, and 𝑓3 and corresponding phases 𝜙1, 𝜙2, and 𝜙3 the sum rules 𝑓1 +

 𝑓2 =  𝑓3 and 𝜙1 +  𝜙2 =  𝜙3  are satisfied. In Case 1,  𝑋𝑖𝑛 = 𝑐𝑜𝑠 2𝜋𝑓𝑡 so that  

𝑋𝑜𝑢𝑡(𝑡) =
𝛾

2
+ 𝑏 cos 2𝜋𝑓𝑡 −

𝛾

2
 cos 4𝜋𝑓𝑡,                                      (2.22) 

indicating that the output contains an additional frequency component at the harmonic 2𝑓 

(harmonic generation) and the mean value of the output has shifted (rectification) with 

respect to the input. Figures 2.8a and 2.8b show the time series of 𝑋𝑜𝑢𝑡 and the significance 

of the wavelet power for the case when 𝑓 = 1/64 = 1/𝜆1, b = 1, 𝜙1 = 𝜋 2⁄ , 𝜙2 = 𝜋 3⁄ , 

and 𝛾 = 0.25 (arbitrary units) and with Gaussian white noise added to the output. In this 
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case, the significance of the wavelet power was tested against a red-noise background 

spectrum. Figure 2.8 shows numerous pointwise significance patches, all of which are 

spurious except for the one at 𝜆1 = 64. The areawise and geometric test correctly identified 

the pointwise significance patch at 𝜆1 = 64 to be significant but deemed a spurious patch 

as significant at time 140 and at 𝜆 = 3. It is noted that the geometric test only deemed the 

1% pointwise significance patch at  𝜆1 = 64 as significant. Also note that the pointwise 

significance test was unable to detect the harmonic with period 𝜆2 = 32 using a red-noise 

background spectrum.  

 

Figure 2.8. (a) Time series of Case 1, which results from passing a single sinusoidal input with period λ = 64 

through Eq. (2.16). Gaussian additive white noise with a signal-to-noise of 2 was added to the output 

response. (b) The significance of wavelet power for Case 1 (see Fig. 2.3 for details). (c) Topological wavelet 

diagram corresponding to (b). Points are the centroids of the holes at a given pointwise significance level, 

where both the color and size of the dots indicate the pointwise significance level at which the hole existed. 

The shading of the patches corresponds to the pointwise significance level at which the wavelet power 

coefficient existed, with the color of the shading lighter than the dots for clarity.  

It should be noted, however, that if the parameter 𝛾 were increased to a value greater 

than 1, the oscillation with period 𝜆2 = 32 would become more prominent. In fact, it was 

found that for 𝛾 ≥ 1 the areawise and geometric tests perform better (not shown), correctly 

identifying the oscillation with period 𝜆2 = 32, with the result also depending on the noise 
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level of the white noise. Case 1 thus only serves as an illustrative example of a situation 

that may arise when a wavelet analysis is applied to a geophysical (often noisy) time series.  

To extract more information from the wavelet power spectrum, the centroids of 

holes were plotted as a function of the pointwise significance level (Fig. 2.8c). Figure 2.8c 

shows that holes only existed at pointwise significance levels of at most 15% and 20% and 

therefore not all nonlinear time series can generate holes at the 5% pointwise significance 

level, suggesting that the relative difference between the primary frequency components or 

the resulting frequency combinations is important, as discussed below. The amplitudes of 

the coefficients b and 𝛾, as well as the signal-to-noise ratio of the Gaussian white noise, 

turn out to be also important, which is discussed below.  

Case 2 is the quadratically phase-coupled time series 

𝑋(𝑡) = 𝑎cos(2𝜋𝑓1𝑡 + 𝜙1) +  𝑏cos(2𝜋𝑓2𝑡 + 𝜙2) +  

𝛾cos[2𝜋(𝑓1 + 𝑓2)𝑡 +  𝜙1 +  𝜙2],                                            (2.23) 

which consists of three frequency components: 𝑓1 = 1/20 = 1/𝜆1, 𝑓2 = 1/30 = 1/𝜆2, 

and 𝑓1 + 𝑓2 = 1/12 = 1/𝜆3, and 𝛾 is assumed to be 0.5. It is noted that Case 1 is a special 

case of Case 2. Like Case 1, wavelet power was also tested against a red-noise background. 

Unlike the significance patches in Fig. 2.8c corresponding to Case 1, holes have appeared 

in 5% pointwise significance patches between periods 𝜆1 = 20 and 𝜆2 = 30 (Fig. 2.9b). 

Moreover, the 5% pointwise significance patch containing the hole (labeled 𝑃1) was found 

to be geometrically significant but was not found to contain an areawise-significant subset. 

It is also worth noting that the areawise and geometric tests failed to detect a significant 

periodicity at 𝜆1  = 20 despite the fact that it is known to exist by construction. Figure 2.9c 

shows that a few holes existed at low pointwise significant levels (≤ 20%), though only 

one was found at the 5% pointwise significance level (light red shading). However, if one 

applies the pointwise significance test to the wavelet power at the 20% significance level 

a feature emerges that can hardly be produced from red-noise (see Table 2.1), namely a 

large 20% significance patch (light blue shading) containing four holes located in the 

period band 20-30. One can thus have confidence that the feature is significant. 

Furthermore, by constructing a patch topologically unlike those generated from red-noise, 
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significant wavelet power extending from time 20 to 300, undetected by the pointwise, 

areawise, and geometric tests, has been recovered, whereas only applying the 5% pointwise 

test would result in two patches that are seemingly indistinguishable from red-noise 

(labeled 𝑃2 and 𝑃3), with only one at  𝜆2 = 30 being geometrically significant.  

 

Figure 2.9. (a) Time series of Case 2. Gaussian additive white noise with a signal-to-noise ratio of 8 was 

added to the time series. At the point labeled A, two oscillations resonate, merging two pointwise significance 

patches in the wavelet domain. At the point labeled B no such resonance occurs and the two significance 

patches separate. (b) The significance of wavelet power (see Fig. 2.3 for details). The pointwise significance 

patch labeled P1 contains a hole and the pointwise significance patches labeled P2 and P3 were falsely deemed 

insignificant by the geometric and areawise tests. (c) Same as Fig. 2.8c except for Case 2.   

The ability of the pointwise, areawise, and geometric tests to detect significant 

structures inevitably depends on the parameters a, b, 𝛾, 𝑓1, and 𝑓2. In fact, Maruan et al. 

(2007) has already determined that the pointwise test and areawise test are sensitive to the 

signal-to-noise level. It was hypothesized that the results of the topological method also 

depend on the parameters a, b, 𝛾, 𝑓1, and 𝑓2. To test the hypothesis, several experiments 

were performed, the first of which investigated the relationship between 𝑓1, 𝑓2, and the 

number of holes. The experiment is described below.  

Though both ideal time series contain a quadratic nonlinearity, the nonlinear 

interaction in Case 2 contained oscillations with nearby frequency components, allowing 
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the formation of holes, whereas for Case 1 no significant holes appeared in significance 

patches. It appears that the presence of holes depends on the relative location of two 

oscillations in the frequency domain, and thus it is reasonable to suspect that there exists a 

critical frequency difference ∆𝑓𝑐𝑟𝑖𝑡,  measuring the maximum frequency difference for 

which holes will appear in a wavelet power spectrum. An empirically derived ∆𝑓𝑐𝑟𝑖𝑡 was 

determined by generating a large ensemble of time series of the form 

x(t) = cos2𝜋𝑓1𝑡 + cos2𝜋𝑓2𝑡 + w(t),                                        (2.24) 

where 𝑓2 > 𝑓1> 0 were generated at random, w(t) is additive white noise, and all the time 

series were of a fixed length. The signal-to-noise ratio was fixed to 20 and each wavelet 

power spectrum was tested against a red-noise background spectrum.  Figure 2.10 shows 

the mean value of 𝑁ℎ as a function of ∆𝑟 = (𝑓2 − 𝑓1)/𝑓2, the relative fractional change. 

For ∆𝑟 = 0.5, holes never appeared, whereas for ∆𝑟 = 0.3 holes appeared frequently. There 

is therefore a preferred frequency combination for which holes are more likely to appear. 

It was estimated that the upper critical value of ∆𝑟 is ∆𝑟𝑐𝑟𝑖𝑡 = 0.45. Using the definition of 

∆𝑟, one can write ∆𝑓𝑐𝑟𝑖𝑡 = 0.45𝑓2 and therefore the critical frequency difference is a 

function of 𝑓2.  

It turns out that even if the above experiment (not shown) was repeated using white-

noise rather than red-noise background spectra ∆𝑟𝑐𝑟𝑖𝑡 would still be equal to 0.45, though 

more holes were found to appear at signal-to-noise ratios less than 2.  It was expected, 

however, that ∆𝑟𝑐𝑟𝑖𝑡 also depends on the amplitudes of the cosines in Eq. 2.24. Thus, a third 

experiment was conducted in which the amplitudes of the cosines were allowed to vary 

from 1 to 50 and 𝑓1 and 𝑓2 were allowed to vary from 0 to 0.5. The experiment was repeated 

for signal-to-noise ratios from 1 to 20. The results from the experiments (not shown) 

indicate that for red-noise background spectra and for a signal-to-noise ratio of 20 that 

∆𝑟𝑐𝑟𝑖𝑡 = 0.53, contrasting with the case for white-noise background spectra where ∆𝑟𝑐𝑟𝑖𝑡 

was found to be 0.51.  
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Figure 2.10. Mean number of holes found in 5% pointwise significance patches as a function of Δr =  (f2 −

f1)/ f2 for a sum of two sinusoids with amplitudes equal to unity and frequency components f1 and f2 such 

that f2 > f1> 0. Additive white noise with a signal-to-noise ratio of 30 was added to the sum of sinusoids. 

Pointwise significance was tested against a red-noise background. Dashed line represents the critical value 

of Δr, the value beyond which holes will rarely occur between oscillations of equal amplitude (set to unity) 

with frequencies f1 and f2.  

The empirical results shown in Fig. 2.10 have theoretical implications. Suppose that 

a time series contained two oscillations of equal amplitude such that frequency components 

of the two oscillations were such that 𝑓2 = 2𝑓1. Furthermore, suppose that the wavelet power 

of the oscillations were computed and the significance was tested against a red-noise or 

white-noise background spectrum. In this case, ∆𝑟  = 0.45 and therefore holes will almost 

never appear in 5% pointwise significance patches, making the detection of quadratic phase 

coupling using topological methods more difficult in the case of self-interactions. More 

generally, suppose that a single sinusoid 𝑋𝑖𝑛(𝑡) =  𝑐𝑜𝑠2𝜋𝑓𝑡  is passed through the 

nonlinear system  

𝑋𝑜𝑢𝑡(𝑡) =   𝑏𝑋𝑖𝑛(𝑡) +  𝛾𝑋𝑖𝑛
2𝑛(𝑡),                                               (25) 

where, after using the power-reduction for a cosine (Beyer, 1987), the output is given by 

𝑋𝑜𝑢𝑡(𝑡) = b cos2𝜋𝑡  + 
𝛾

22𝑛
(

2𝑛
𝑛

) +  
𝛾

22𝑛−1
∑ (

2𝑛
𝑘

) cos 4𝜋𝑓(𝑛 − 𝑘)𝑡𝑛−1
𝑘=0  ,              (26) 
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where n is a positive integer and (
𝑛
𝑞) is a binomial coefficient. For the cosines in the 

summation, the frequency difference between any two cosines is  

∆𝑓 = 4𝜋𝑓(𝑛 − 𝑝) - 4𝜋𝑓(𝑛 − 𝑚) = 4𝜋𝑓(m-p),                                    (27) 

where 0 ≤ 𝑝 <m≤n-1. Thus,  

∆𝑟 = (𝑓2 − 𝑓1)/𝑓2 =  
4𝜋𝑓(𝑚−𝑝)

4𝜋𝑓(𝑛−𝑝)
=  

𝑚−𝑝

𝑛−𝑝
.                                          (28) 

Using the fact that holes can only appear between oscillation pairs with ∆𝑟 ≤ 0.53 for a 

red-noise background spectrum, one can show that for large n more holes are able to appear 

in wavelet power spectra, with the likelihood of holes appearing depending on b and 𝛾, 

with larger values of b and  𝛾 producing more holes. In this case, holes can form in the 

wavelet spectrum since, for example, if m = 6 and p = 5 with n = 10 the condition ∆𝑟 ≤  

0.53 will be satisfied. The result also holds if the order of the nonlinear interaction was odd 

and if the cosine function 𝑋𝑖𝑛(𝑡) was replaced by a sine function. For an odd order 

nonlinear interaction, however, ∆𝑟 = (2𝑚 − 2𝑝)/(2𝑛 + 1 − 2𝑝), where 0 ≤ 𝑝 <m≤n.  

2.5.2 Topological Significance Testing of Climatic Time Series 

With a better understanding of the origins of holes contained in significance patches, 

the wavelet power spectra shown in Figs. 2.1 and 2.2 are now analyzed more closely. 

Shown in Fig. 2.11a is the topological wavelet diagram corresponding to the wavelet power 

spectrum of the Niño 3.4 index, which shows the existence of numerous holes at low (≤

20%) pointwise significance levels, indicating that these patches are significant features 

(see Table 2.1). For example, the rather large patch extending from 1960 to 2013 in the 

period band 16 to 64 months contains a hole located at 1985 and at a period of 32 months 

that existed at the 5% pointwise significance level. In the same patch, three more holes 

existed at the 10% pointwise significance level, one located at 1975 and at a period of 48 

months, a second one located at 1995 and at a period of 64 months, and a third one located 

at 2008 and at a period of 24 months. According to Table 2.1, three holes in a single 10% 

pointwise significance patch under the null hypothesis of red-noise is extremely unlikely, 

if not impossible. On can thus conclude with high confidence that the patch was not 

generated from a random stochastic fluctuation.  Moreover, the discussion in Sect. 2.5.1 
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suggests that at the very least phase-coherent oscillations were likely present in the Niño 

3.4 time series, where phase coherency implies that two oscillations have a stable relative 

phase relationship but are not necessarily interacting nonlinearly.    

 

Figure 2.11. Same as Fig. 2.8c but for the mean monthly (a) Niño 3.4 and (b) NAO index anomalies for 1870-

2013. 

The wavelet topological diagram (Fig. 11b) corresponding to the wavelet power 

spectrum of the NAO is less interesting, containing few holes at high pointwise 

significance levels. At 1875, however, a patch contained holes at the 10% pointwise 

significance level, suggesting that the patch is a significant feature.  

2.6. Summary and Discussion 

A geometric significance test was developed for more rigorously assessing the 

significance of features in the wavelet domain. The geometric test, although related to the 

existing areawise test, was found to be more flexible in the sense that p-values could be 

readily calculated, involving a single Monte Carlo ensemble. Another strength of the 

geometric test is that the false discovery rate can be controlled at a desire level, minimizing 

the number of false rejections of the null hypothesis. On the other hand, the geometric test 

had the disadvantage of being less local than the areawise test.  
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It is noted that the geometric test was only applied to patches arising from the 

convolution of the Morlet wavelet with a time series. The results presented in this paper 

are not valid for wavelet power spectra obtained using other analyzing wavelets, the reason 

for which is that each wavelet function has different time- and scale-localization properties 

that inevitably impact the geometry of patches. For example, patches found in the wavelet 

power spectrum obtained using a Paul wavelet are elongated in the scale direction relative 

to those obtained using a Morlet wavelet with 𝜔0 = 6, resulting in nearby patches at 

different scales merging together. The merging of patches at different scales will alter their 

geometry with respect to the relatively thin (in scale) patches obtained using the Morlet 

wavelet.  

One disadvantage of the geometric and areawise tests is that they require a binary 

decision in which pointwise and geometric significance levels must be chosen. The binary 

decision can be circumvented by applying a p-value adjustment procedure to the wavelet 

power coefficients directly. For example, one could apply the Benjamini and Hochberg 

(1995) procedure to the wavelet power coefficients or a modified version of the procedure 

developed by Benjamini and Yekutieli (2002), which is valid for any dependency structure 

among the local test statistics. The latter procedure would seem most appropriate given the 

autocorrelation structure of wavelet power coefficients; however, it is noted that the 

procedure has less statistical power than the original procedure valid for independent local 

test statistics, though Wilks (2006) found the Benjamini and Hochberg (1995) procedure 

to remain powerful even when the assumption of independence is violated. 

 

The topology of significant patches was also analyzed. Holes in significant patches, a 

topological notion, were capable of distinguishing spurious patches from true structures. 

The holes were identified as arising from phase-coherent oscillations with nearby 

frequency components and may indicate the existence of a nonlinear interaction. Patches 

arising from different analyzing wavelets can differ topologically. For the Paul wavelet, 

the shrinking of patches in time, for example, was found, after a preliminary investigation, 

to reduce the number of holes in wavelet power spectra. The reduction in the number of 

holes can be attributed to the tearing of a patch in the time direction. The results, however, 

require further investigation and are a subject of future work. 
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The new methods introduced in this paper were applied to the NAO and Niño 3.4 

indices, two well-known but contrasting time series. For the Nino 3.4 index, the methods 

detected geometrically significant structures as well as topological structures unlike that of 

red-noise, which provide evidence of some predictability of El Niño/Southern Oscillation, 

which has become of increasing importance in climate science given that its future state is 

uncertain under a changing global climate system (Latif and Keenlyside, 2008). For the 

NAO index, the new methods were unable to detect features that are distinguishable from 

background noise, suggesting that the NAO is a stochastic process with little predictability. 

The methods developed in this paper will give researchers the tools needed for a better 

understanding of features found in wavelet power spectra.   
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Chapter 3  

 

Cumulative Areawise Testing in Wavelet Analysis and its 

Application to Geophysical Time Series 

  

3.1. Introduction 

In many research fields, it is of interest to understand the behavior of time series in 

order to achieve a deeper understanding of physical mechanisms or relationships. Such a 

task can be formidable given that time series are composed of oscillations, non-

stationarities, and noise. Fortunately, many tools have been developed to extract 

information from time series, including singular spectrum analysis (Vautard et al., 1992), 

Fourier analysis (Jenkins and Watts, 1968), and wavelet analysis (Meyers et al., 1993; 

Torrence and Compo, 1998). The goal of each of these tools is to assess whether 

deterministic features are embedded in a time series. Fourier analysis, as an example, is a 

method by which a time series is decomposed into frequency components so that embedded 

oscillations can be detected. However, the underlying assumption in Fourier analysis is that 

time series are stationary. The limitation can be circumvented by using a windowed Fourier 

analysis but with the caveat that the window width is fixed, which can lead to poor 

resolution at low-frequencies (Lau and Weng, 1995). Wavelet analysis, relaxing the 

assumption of stationarity, offers an alternative method to Fourier analysis in which the 

window width is no longer fixed, minimizing aliasing (Meyers et al., 1993; Torrence and 

Compo, 1998). Wavelet analysis has been demonstrated to be useful in the understanding 

of the North Atlantic Oscillation (NAO; Higuchi et al., 2003; Olsen et al., 2012), 

applications to oceanographic problems (Meyers et al., 1993; Lee and Lwiza, 2008; 

Whitney, 2010; Wilson et al., 2014), assessments of historical hydroclimate variability 

(Labat, 2004; Labat, 2008), and many other geophysical applications (Grinsted et al., 2004; 

Velasco and Mendoza, 2008).  

When using any time series extraction procedure it is important to assess the statistical 

significance of the computed test statistic against some null hypothesis. In geophysical 
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applications, for example, red noise is typically chosen as the null hypothesis. Torrence 

and Compo (1998) were the first to apply wavelet analysis in a statistical framework using 

pointwise significance testing, allowing deterministic features to be distinguished from 

stochastic features. In a pointwise significance test, one tests each estimated wavelet power 

coefficient against a stationary theoretical red-noise background spectrum. Despite the 

insights gained from the statistical procedure, it has many deficiencies, as noted by Maruan 

and Kurths (2004), who showed that it can lead to many spurious results simply due to 

multiple testing. Addressing the multiple-testing problem, Maraun et al. (2007) developed 

an areawise test that assesses the significance of so-called pointwise significance patches, 

contiguous regions of pointwise significance in a wavelet power spectrum. The areawise 

test, though dramatically reducing the number of spurious results, is computationally 

inefficient, involving a root-finding algorithm to estimate a critical area of the reproducing 

kernel corresponding to the desired significance level of the test. Furthermore, the critical 

area needs to be computed for different analyzing wavelets and for their associated 

parameters, such as the central frequency for the Morlet wavelet and the order in the case 

of the Paul wavelet.   

A simpler procedure for addressing multiple testing problems is the geometric test 

developed by Schulte et al. (2015). Like the areawise test, the test statistic for the procedure 

is based on patch area, or more specifically, the normalized area of the patch, which allows 

patches at different periods to be compared simultaneously. The calculation of the critical 

level for the geometric test is much simpler than that for the areawise test, involving the 

computation of the normalized area for a large ensemble of patches under a null hypothesis 

that results in a null distribution from which the desired critical level can be calculated.  

Both the geometric and areawise tests, however, suffer from a binary decision: one 

must choose both a pointwise and areawise or geometric significance level. The problem 

with such a statistical construction is that the outcomes of the testing procedure may depend 

on the chosen pointwise significance level. For an ideal test, there is a single significance 

level that is chosen and the results of the testing procedure depend only on that significance 

level so that a test statistic, for example, that is 1% significant is guaranteed to be 5% 

significant. In the present case, however, there is no such guarantee: a 1% geometrically 
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significant patch at one pointwise significance level may not be 5% significant at another 

pointwise significance level. In such cases, the statistical significance of patches is 

ambiguous and may preclude further scientific investigation. This sensitivity problem 

underscores the need to develop a computationally efficient testing procedure free of binary 

decisions. The approach taken here will consider the areas of patches over all pointwise 

significance levels, and hence the method is called the cumulative areawise test. This test 

has the important feature that the significance of the wavelet power coefficients is a 

monotonic increasing function of the pointwise significance level. In other words, a 

wavelet power coefficient, for example, that is 1% significant under the new procedure will 

be guaranteed to be 5% significant, a consistent statistical construction.  

The paper is organized as follows: in Section 2, a brief description of wavelet 

analysis is provided together with a discussion of existing statistical testing procedures, 

including the sensitivity of the geometric test to the chosen pointwise significance, 

motivating the construction of the cumulative areawise test. Before proceeding to the 

development of the new testing procedure, the topological properties of red noise are 

analyzed in Section 3.3. In Section 3.4, the cumulative areawise test is developed and is 

followed by a comparison of the test in terms of statistical power to the existing geometric 

test. Applications of the test to prominent climate indices are presented in Section 3.5, 

followed by concluding remarks in Section 3.6. 

3.2. Existing Wavelet Analysis Significance Tests 

3.2.1 Wavelet Analysis  

 The wavelet transform of a time series is defined as the convolution of the time 

series with a wavelet function 𝜓0. The wavelet transform of a time series 𝑥𝑛 (n = 1, ... , N) 

with a wavelet function 𝜓0 is given by  

𝑊𝑛(𝑠) =  √
𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                   (3.1) 

where s is the wavelet scale, 𝛿𝑡 is a time step determined by the data, and N is the length 

of the time series. There are many kinds of wavelets, but perhaps the most common are the 
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Morlet, Paul, and Dog wavelets. For geophysical applications, the Morlet wavelet is often 

used and is given by 

𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                             (3.2) 

where 𝜔0 is the dimensionless frequency, 𝜂 = 𝑠 ⋅ 𝑡, t is time, and the wavelet scale is 

related to the Fourier period by 𝜆 = 1.03𝑠 if 𝜔0 = 6. This particular wavelet balances both 

frequency and time-localizations. Throughout the paper, 𝜔0 = 6. The Paul wavelet, which 

is also a complex wavelet, is more localized in time, less localized in frequency space, and 

is given by  

𝜓0(𝜂) =  
(2𝑖)𝑚𝑚!

√𝜋(2𝑚)!
(1 − 𝑖𝜂)−(𝑚−1),                                            (3.3) 

where m is the order of the Paul wavelet, which controls the localization properties of the 

analyzing wavelet. In this case, the Fourier period is related to the wavelet scale by the 

following equation: 

𝜆 =  
4𝜋𝑠

2𝑚+1
.                                                              (3.4) 

If even more time-localization is desired, one can use the Dog wavelet, a real wavelet given 

by 

𝜓0(𝜂) =  
(−1)𝑚+1

√Γ(𝑚+ 
1

2
)

𝑑𝑚

𝑑𝜂𝑚 𝑒−𝜂2/2,                                        (3.5) 

where m represents the order of the derivative and Γ is the gamma function. For the Dog 

wavelet, the Fourier period is related to the wavelet scale by the equation  

𝜆 =  
2𝜋𝑠

√𝑚+ 
1

2

.                                                               (3.6) 

In this paper, the Paul wavelet is used with m = 4 and the Dog wavelet is used with m = 2.  

The wavelet power is given by  

|𝑊𝑛(𝑠)|2                                                               (3.7) 
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and represents the wavelet power spectrum of the time series. Inherent in the wavelet 

transform are edge effects due to the finite time series. In particular, in a wavelet power 

spectrum there exists a region called the cone of influence, which is defined as the e-folding 

time of the autocorrelation for wavelet power at each scale. The e-folding time is defined 

as the point at which the wavelet power for a discontinuity at the edge drops by a factor of 

𝑒−2 (Torrence and Compo, 1998).  

3.2.2 Pointwise Significance Test 

In spectral analysis, it is important to assess the statistical significance of spectral 

power against a noise background. In geophysical applications of wavelet analysis, one 

often tests each individual wavelet power coefficient against a stationary red-noise 

background to determine their statistical significance (Torrence and Compo, 1998). For a 

first-order autoregressive (Markov) process  

𝑥𝑛 =  𝜌𝑥𝑛−1 + 𝑤𝑛,                                                      (3.8) 

where 𝜌 is the lag-1 autocorrelation coefficient and 𝑤𝑛 is Gaussian white noise with 𝑥0 =

0, the normalized theoretical stationary red-noise power spectrum is given by  

𝑝𝑓 =  
1− 𝜌2

1+ 𝜌2−2𝜌 cos(2𝜋𝑓 𝑁⁄ )
,                                             (3.9) 

where f = 0, … , N/2 is the frequency index (Gilman et al., 1963). To obtain, for example, 

the 5% pointwise significance level (𝛼 = 0.05), one must multiply Eq. (3.9) by the 95th 

percentile of a chi-square distribution with two degrees of freedom and divide the result by 

2 to remove the degree-of-freedom factor (Torrence and Compo, 1998). The result of the 

so-called pointwise testing procedure is a subset of wavelet power coefficients whose 

values exceed the specified background noise spectrum. Recall from Section 3.1 that 

significant wavelet power coefficients often occur in clusters or contiguous regions of 

pointwise significance called pointwise significance patches (referred to as patches, 

hereafter). 

 Consider the time series of the Atlantic Multi-decadal Oscillation (AMO), North 

Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Niño 3.4 indices 

shown in Fig. 3.1. The PDO index describes detrended sea surface temperature (SST) 
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variability in the North Pacific poleward of 20°N latitude (Mantua and Hare, 2002) and the 

AMO index captures the detrended SST variability in the Atlantic Ocean basin (Kerr, 

2002). As shown in Figs. 3.1a and 3.1b, the PDO and AMO indices exhibited multi-decadal 

variability, with periods of 20-60 years, from, respectively, 1856 to 2014 and 1900 to 2014. 

The reason for the low-frequency variability of the PDO is subject to debate. Some studies 

suggest it is the reddened response to white noise atmospheric forcing, whereas other 

studies hypothesize that it is also the integrated response of the El-Niño/Southern 

Oscillation (ENSO) signal (Newman et al., 2004).  

 

Figure 3.1. The monthly (a) AMO, (b) NAO, (c) Niño 3.4, and (d) PDO indices. Data sources are the Climate 

Prediction Center for the AMO index (http://www.esrl.noaa.gov/psd/data/climateindices/list/), National 

Center for Atmospheric Research for the NAO (https://climatedataguide.ucar.edu/data-type/climate-indices) 

and Niño 3.4 (http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/) indices, and University of 

Washington for the PDO index (http://research.jisao.washington.edu/pdo/PDO.latest). The Niño 3.4 index 

was converted to monthly anomalies by subtracting off the mean annual cycle. 

The NAO index, an atmospheric index, quantifies the difference in sea-level 

pressure of the Icelandic Low and the Azores High and is related to the strength and 

position of the jet stream across the North Atlantic (Hurrell et al., 2003). As shown in Fig. 

3.1b, the NAO mainly operated on time scales of months and season, and the raw time 

series is rather noisy. The Niño 3.4 index is an oceanic metric for quantifying the strength 

of ENSO and is defined as SST anomalies in the Equatorial Pacific in the region bounded 

http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/
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by 120°W-170°W and 5°S-5°N (Trenberth, 1998). The Niño 3.4 index time series 

exhibited variability on an array of time scales, especially in the 2-7 year period band. 

Various physical interpretations for the 2-7 year oscillation have been proposed, including 

the Unified Oscillator, Delayed Oscillator, and the Recharge Oscillator (Wang et al., 2004).    

Shown in Fig. 3.2 are the wavelet power spectra of the AMO, NAO, Niño 3.4, and 

PDO indices. The wavelet power spectrum of the AMO detected enhanced variance at a 

period of 512 months, as indicated by the thin contour that encloses a region of 5% 

pointwise significance. All of the other patches are located at periods less than 32 months. 

The wavelet power spectrum of the NAO indicated that the NAO exhibited enhanced 

variability on an array of time scales. For example, there is a patch located at a period of 

64 months and 1910.  

 

Figure 3.2. Wavelet power spectra of the (a) AMO, (b) NAO, (c) Niño 3.4, and (d) PDO indices. Thin black 

contours enclose regions of 5% pointwise significance and thick blue contours indicate those patches that are 

geometrically significant at the 5% level. Light shading represents the cone of influence (COI), the region in 

which edge effects cannot be ignored.  

Like the wavelet power spectrum of the AMO, numerous patches were also found 

at periods less than 32 months. Large regions of enhanced variance were found in the 

wavelet power spectrum of the Niño 3.4 index. The largest of these regions was located in 

the time period 1950-2014 and the period band 16-32 months, consistent with how the 

ENSO varies with periods of 2-7 years. In the same patch, there are holes as described by 

Schulte et al. (2015) that may indicate the presence of nonlinearities. Holes are defined 
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formally as follows. For the closed unit interval I = [0 1], let 𝑓: 𝐼 → 𝑃 be a continuous 

closed path in a significance patch P. A patch is said to contain a hole if there exists a path 

that cannot be continuously deformed into a point, where the feature obstructing such a 

deformation is the hole. Two patches in the same period band were also identified from 

1870 to 1890. For the wavelet power of the PDO index, a large patch centered at a period 

of 512 months extending from 1910 to 2013 was detected. Most of the patches, however, 

were located at periods less than 8 months, time scales not typically associated with the 

PDO.  

3.2.3 Geometric Significance Test 

To determine if the results from the pointwise test are artifacts of multiple testing, 

a geometric test was applied to the patches located in the wavelet power spectra (Schulte 

et al., 2015). The test statistic for the geometric test is given by a normalized area 

𝐴𝑛 = 
𝐴

𝐴𝑅
,                                                             (3.10) 

where 𝐴 is the area of the patch and 𝐴𝑅 is the area of the reproducing kernel dilated and 

translated according to the centroid of the patch. Regarding patches as polygons with 

vertices (𝑥𝑘, 𝑦𝑘) with k = 1, … , m-1, the area of the patch is determined by a simple 

formula given by 

A = 
1

2
|∑ (𝑥𝑘

𝑚−1
𝑘=0 𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘)|,                                              (3.11) 

where 𝑦0 = 𝑦𝑚 and  𝑥0 = 𝑥𝑚. Simiarly, the centroids of the polygons are given by 

       𝐶𝑡 =  
1

6𝐴
∑ (𝑥𝑘 +  𝑦𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 − 𝑥𝑘+1𝑦𝑘)                                        (3.12) 

and 

𝐶𝑠 =  
1

6𝐴
∑ (𝑦𝑘 +  𝑥𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘),                                       (3.13) 

where 𝐶𝑡 and 𝐶𝑠 are the time and scale coordinates, respectively, of the centroid (Schulte 

et al., 2015).                                               
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 To determine the critical level of test, a large ensemble of patches under a noise 

model is generated and 𝐴𝑛 is computed for each patch, resulting in a null distribution from 

which the desired critical level of the test can be obtained.  

 The application of the geometric test to the wavelet power spectra of the AMO, 

NAO, PDO, and Niño 3.4 time series is also shown in Fig. 3.2. For the AMO index 5% 

geometrically significant patches were identified in the period band 2-16 months prior to 

1880, after which no patches were identified as geometrically significant. Note that the 

large patch centered around the period of 512 months was not found to be geometrically 

significant at the 5% level, suggesting that the multi-decadal variability is stochastic. A 

few geometrically significant patches were identified in the wavelet power spectrum of the 

NAO: one centered at a period of 64 months and 1910, a second one centered at a period 

of 8 months and 1910, and several others centered at a period of 4 months throughout the 

record length. Many geometrically significant patches were identified in the wavelet power 

spectrum of the Niño 3.4 index. For example, a rather large geometrically significant patch 

is located in the 16-64 month period band from 1950 to 2014. There are also many 

geometrically significant patches located in the 2-8 month period band from 1900 and 

1950. Numerous geometrically significant patches were identified in the wavelet power 

spectrum for the PDO index, all of which were located in the 2-8 month period band. There 

was also a large patch centered on a period of 512 months, but the patch was not found to 

be geometrically significant, suggesting that, like the AMO, the multi-decadal variability 

arose from stochastic processes.  

3.2.4 Sensitivity of the Geometric Test to the Chosen Pointwise Significance Level  

To show that the geometric test is sensitive to the pointwise significance level 

chosen, it will be useful to compute the quantity 

𝑟 =  
𝑁𝛼1,𝛼2

𝑁𝛼1

,                                                                (14) 

where 𝑁𝛼1,𝛼2
 is the number of geometrically significant patches at pointwise significance 

level 𝛼1 that are also geometrically significant at pointwise significance level 𝛼2 and 𝑁𝛼1
 

is the number of patches at 𝛼1 that are geometrically significant, where the geometric 
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significance level for all cases is fixed 𝛼𝑔𝑒𝑜. In the ideal situation, r = 1, indicating that 

geometrically significant patches never lose their geometric significance as the pointwise 

significance level is increased. This case, however, is optimistic, as the calculation of 

geometric significance is rather stochastic. To demonstrate the stochastic nature of the 

geometric test, r was computed for 1000 wavelet power spectra of red-noise processes with 

lengths 1000 and lag-1 autocorrelation coefficients equal to 0.5 under four different 

scenarios, the first of which (Scenario 1) is the case in which 𝛼1 = 0.1 , 𝛼2 = 0.05, and 

𝛼𝑔𝑒𝑜 = 0.05 (Fig. 3.3a). With the mean of r (denoted by 𝑟̅ hereafter) being 0.3, it can hardly 

be expected that a geometrically significant patch at 𝛼1 = 0.1 to remain significant when 

the pointwise significance level is changed to 𝛼2 = 0.05, at least in the case of red-noise 

processes. Scenario 2, shown in Fig. 3.3b, is the same as Scenario 1 except that 𝛼𝑔𝑒𝑜 =

0.01. In this case, 𝑟̅ = 0.15, suggesting that the geometric test is even more sensitive to the 

chosen pointwise significance level for smaller 𝛼𝑔𝑒𝑜. Also note that, unlike the distribution 

shown in Fig. 3.3a, the distribution is skewed, favoring lower values and supporting the 

idea that the geometric test is more sensitive to the chosen pointwise significance level for 

𝛼𝑔𝑒𝑜 = 0.01.  

In Scenario 3, 𝛼1 = 0.05 and 𝛼2 = 0.01, with 𝛼𝑔𝑒𝑜 = 0.01. The distribution shown 

in Fig. 3c is even more skewed than that corresponding to Scenario 2, with 𝑟̅ = 0.05. Also 

note that in many cases 𝑟 = 0, indicating that there are patches that are not geometrically 

significant for both 𝛼1 = 0.05 and 𝛼2 = 0.01. The reason is that some patches existed at 

𝛼1 = 0.05 but did not exist at 𝛼2 = 0.01 so that their normalized areas are zero.  

 Scenario 4 was similar to Scenario 3 except that 𝛼𝑔𝑒𝑜 = 0.05. Although Scenarios 

3 and 4 used the same pointwise significance levels, the results differ, with 𝑟̅ = 0.22, 

suggesting that the geometric test is less sensitive for larger 𝛼𝑔𝑒𝑜. The results are similar 

to that of Scenarios 1 and 2, where increasing the pointwise significance level increased 

the sensitivity of the geometric test to the chosen pointwise significance level.  
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Figure 3.3. (a) A histogram of r =  
Nα1,α2

Nα1

 for α1 = 0.1 , α2 = 0.05, and αgeo = 0.05  obtained from the 

generation of 300 wavelet power spectra of red-noise processes of length 1000 with lag-1 autocorrelation 

coefficients equal to 0.5. (b) Same as (a) but with αgeo = 0.01 . (c) Same as (a) but with α1 = 0.05 and α2 =

0.01, and αgeo = 0.01 . (d) Same as (c) but with αgeo = 0.05.  

3.3. Persistent Topology 

3.3.1 Persistent Homology 

Before developing the cumulative areawise test, it will be necessary to understand 

the topology of features found in a typical wavelet power spectrum. It will be especially 

important to understand how the features evolve as the pointwise significance level is 

increased or decreased.  Such information can be obtained using persistent homology, a 

tool in applied algebraic topology (Edelsbrunner, 2004). Persistent homology will provide 

a formal setting for calculating the lifetimes of patches and holes, where lifetimes describe 

when features first appear and when they disappear. For example, a patch appearing at the 

5% pointwise significance level and vanishing at the 1% pointwise significance level 

would have a lifetime of 4. In this paper, the intuitive foundation of persistent homology 

will be described rather than giving a formal mathematical exposition.  

Suppose that A is a patch at the pointwise significance level 𝛼 = 𝛼1 as shown in 

Fig. 4.4a. One can increase the size of the patch A by increasing 𝛼 to 𝛼2, which lowers the 

threshold for significance, resulting in the new geometric realization 𝐴′ of A shown in Fig. 



48 
 

4.4a. The evolution of the patch can be monitored using a barcode (Ghrist, 2008), which is 

a collection of horizontal lines representing the birth and death of features. Following the 

convention of persistent homology, the y-axes of barcodes will be denoted by 𝐻0 for 

patches. In algebraic topology, 𝐻0 are called homology groups and measure the path-

connectedness (Appendix D) of sets. The patch A, being created at 𝛼1, results in the line 

segment beginning at 𝛼1 in Fig. 4.4e. Furthermore, the patch neither vanishes nor merges 

with another patch at 𝛼2 so that the horizontal line continues to 𝛼2. Note that a new patch 

B is created at 𝛼2 because the pointwise significance test is less stringent. The creation of 

the patch results in a new line starting from 𝛼2. A more complicated situation occurs at 𝛼3, 

where the patches 𝐴′ and B merge and result in a new patch C. In this case, it is unclear if 

C is a geometric realization of 𝐴′ or B. It will therefore be necessary to use the so-called 

Elder rule from persistent homology (Edelsbrunner and Harer, 2009).  

 

Figure 3.4. (a) - (d) The topological evolution of  patches across four pointwise significance levels. (e) The 

barcode showing the birth and death of patches throughout the evolution process. Horizontal lines with 

arrows indicate those patches that never die, the so-called essential classes.  

According to this rule, the oldest patch will continue to live and the younger patch will die 

entering the merger point. In the present case, 𝐴′ is the older patch because it first appears 

as A at 𝛼1 and B is the younger patch, being created after A at 𝛼2. Therefore, according to 

the Elder rule, the horizontal line corresponding to A in the barcode continues to 𝛼4, but 

the line corresponding to B terminates at 𝛼3, as it dies entering 𝛼3. Also note the creation 

of a new patch D at 𝛼3 and the corresponding line segment in the barcode. Another merger 
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occurs at 𝛼4 and the Elder rule determines that the line segment for D ends and the 

horizontal line for A continues, where the arrow indicates that A never dies.  

Persistent indices of patches can also be obtained, which will be defined as the 

difference between the pointwise significance level for which the features die entering and 

the level at which the features were born. For patches that never die, their persistent indices, 

by convention, will be set to infinity.  

3.3.2 Persistent Homology of Red-noise 

 To understand the topology of patches generated from red-noise processes, it is 

useful to use Monte Carlo methods to determine, for example, the number of patches at a 

particular pointwise significance level, or similarly, the number of holes. Shown in Fig. 

3.5a is the ensemble mean of the number of patches (denoted by 𝛽0, hereafter) as a function 

of 𝛼 for the Moret, Paul, and Dog wavelets obtained from generating 100 wavelet power 

spectra of red-noise processes of length 300 and computing 𝛽0 for each of the wavelet 

power spectra at each pointwise significance level.  

 

Figure 3.5. (a) Number of patches and (b) the number of holes for three analyzing wavelets as a function of 

α. 

For the the Morlet and Paul wavelets, the number of patches reached minima at 

𝛼 =  0.01 and 𝛼 =  0.99 and maxima at 𝛼 = 0.18. The minima in the number of patches 

for the Dog wavelet was the same as the Morlet and Paul wavelets, but the maximum 

occurred at 𝛼 = 0.5. Perhaps more interesting are the number of holes for all three 
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wavelets: very few holes existed at low pointwise significance levels and the number 

increased rapidly until 𝛼 =  0.9, at which point 𝛽0 no longer increased.   

 To understand more fully the curves shown in Fig. 3.5a, the persistent homology 

of patches generated from red-noise processes of length 150 was computed as 𝛼 varies 

from 0.01 to 0.99, and barcodes representing the evolution of patches in the wavelet power 

spectra were computed. In each case the lag-1 autocorrelation coefficients were set to 0.5, 

but the results are identical for other autocorrelation coefficients. Shown in Fig. 3.6a is a 

barcode corresponding to a wavelet power spectrum obtained using the Morlet wavelet. 

Recalling that the beginning of the line segment represents the birth of patches, the barcode 

indicates that a few patches were born at 𝛼 = 0.02. As 𝛼 increases to 𝛼 = 0.3 more patches 

are born, consistent with the fact that more spurious results occur for larger pointwise 

significance levels. Note that, for 𝛼 > 0.2, patches begin to die, representing the merger of 

smaller patches into larger patches. The merging process occurs until 𝛼  = 0.7, at which 

point all patches have merged into a single patch, which is called the essential class. To 

show that the distribution of the lifetimes for patches generated from red-noise processes 

is not random, 100 wavelet power spectra of red-noise processes were generated and the 

persistence indices for all patches in each wavelet power spectra were computed (Fig. 

3.6b). The resulting distribution indicates that lifetimes of patches is typically 0.1 and 

relatively few patches live longer than 0.6. Overall, the distribution characterizes patches 

generated from red-noise processes as short-lived. 

 A typical barcode corresponding to a wavelet power spectrum of a red-noise 

process whose wavelet power spectrum was obtained using the Paul wavelet is shown in 

Fig. 3.6c. The barcode is similar to that of the Morlet wavelet, with many patches being 

born before 𝛼 = 0.3 and generally merging for 𝛼 > 0.3. The distribution of persistence 

indices shown in Fig. 3.6d obtained from Monte Carlo methods as described above 

suggests that the lifetime patches are typically longer than that generated from the Morlet 

wavelet; the distribution has smaller negative skewness, and there are more persistence 

indices within the range 0.6 - 0.85.  
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Figure 3.6. (a) Example barcodes for H0 corresponding to a wavelet power spectrum obtained from the (a) 

Morlet, (b) Paul, and (c) Dog wavelets. A red-noise process with length 150 and lag-1 autocorrelation 

coefficient equal to 0.5 was used to create the barcodes. Distribution of persistence indices representing the 

lifetimes of patches for the (b) Morlet, (d) Paul, and (f) Dog wavelets. Distribution was obtained by 

generating 1000 wavelet power spectra of red-noise processes with lengths 500 and lag-1 autocorrelation 

coefficients equal to 0.5. Essential classes have been removed from the distributions.  

A barcode corresponding to a wavelet power spectrum of a red-noise process 

obtained using a Dog wavelet is shown in Fig. 6e. Consistent with Fig. 3.6, the barcode 

differs from that of the other wavelets, with many patches merging for 𝛼 > 0.4. In fact, 

unlike the case for the Morlet wavelet, many patches were found to have merged after 𝛼 > 

0.8. The merging for large 𝛼 suggests that patches generated using the Dog wavelet tend 

to be smaller so that it takes longer to form the essential class. In other words, larger patches 

represent a larger fractional area of the wavelet domain so that fewer of them can reside in 

the wavelet domain, whereas a greater number of small patches can exist in a wavelet 

domain of equal size. The results for the Monte Carlo methods shown in Fig. 3.6f show 

that the distribution of persistence indices is indeed different. Compared to the Morlet and 

Paul wavelets, fewer patches were found to have persistence indices less than 0.15, and 

persistence indices are more uniformly distributed in the range 0.2 - 0.7.   

The non-random evolution of patches and holes for red-noise processes suggests 

that a test can be developed that uses the information of patches at many pointwise 

significance levels. One would expect that patches arising from signals would behave 
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differently, breaking apart less frequently when the pointwise significance level is 

increased. In the extreme case that a patch is the result of taking the wavelet transform of 

a pure sinusoid, there would be a single patch at all pointwise significance levels and that 

patch would not break apart. Suppose, however, that white noise was added to the sinusoid 

such that the patch breaks apart for small 𝛼. In this case, the area of the patch would be 

smaller with respect to the pure sinusoid case, the difference in area arising from the 

splitting of the patch. On the other hand, if 𝛼 were increased, then the patch would become 

a single patch by merging, and the area will be closer to that of the pure case. These facts 

suggests that a test can be constructed whose test statistic is calculated over a set of 

pointwise significance levels, capturing the behavior of patches as they evolve. In 

particular, the test should make use of how the evolution of patches and holes under the 

null hypothesis of red noise is not random and how the evolution of patches arising from 

signals may differ from that of the null hypothesis.   

3.4. Development  

3.4.1 Geometric Pathways  

Unlike the geometric test that assesses the significance of patches at a single 

pointwise significance level, the cumulative areawise test (referred to as the areawise test, 

hereafter) will assess the significance of a patch as it evolves under a changing pointwise 

significance level. The goal of the method is to remove the binary decision from which the 

geometric test suffers. The idea behind the test statistic will be that a patch that is 

consistently geometrically significant for different pointwise significance levels is more 

significant than a patch that is only geometrically significant at a single pointwise 

significance level. In other words, the geometric test simply assesses the significance of 

patches at a single pointwise significance level but does not take into account that the patch 

could have been significant at that particular pointwise significance level by chance (Fig. 

3.3).  

The first step of the areawise test is to select a finite set of pointwise significance 

levels that remains fixed throughout the testing procedure. Although there are infinite 

number of pointwise levels to choose from, it will be shown through empirical arguments 
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that the selection need only be limited to a finite set of pointwise significance levels. 

Furthermore, it will be shown that one needs only to limit the test to a certain range of 

pointwise significance levels, making the test more computationally feasible. The selection 

of pointwise significance levels will be discussed in depth in Sections 3.4.2. and 3.4.5. For 

the theoretical development of the testing procedure, the pointwise significance levels will 

be left unspecified.  

The evolution of a patch under a changing pointwise significance level will be made 

precise by introducing the notion of a geometric pathway. A geometric pathway will be 

defined as a collection 𝒫 of r patches at the corresponding pointwise significance levels 

𝛼1 < 𝛼2<…< 𝛼𝑟  such that 

 𝑃1 ⊂ 𝑃2 ⊂ 𝑃3 ⊂ ⋯ ⊂ 𝑃𝑟                                                            (3.15) 

and 

 

𝑔1 < 𝑔2 < 𝑔3 … < 𝑔𝑟,                                                           (3.16) 

where each 𝑔𝑗 is a normalized area corresponding to the patch 𝑃𝑗. For this testing 

procedure, the normalized area will be calculated by dividing the patch area by the scale 

coordinate of the centroid squared. The inequalities (3.16) are guaranteed to hold for any 

nested sequence (3.15) (Appendix E). Viewing the 𝛼𝑗’s as time parameters, one can think 

of the patch being in its initial configuration at 𝛼1 and at its final configuration at 𝛼𝑟. The 

length of a pathway will be given by r, the number of elements in the pathway. If the 

computation of the geometric pathways is limited to an interval 𝐼 =  [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥], then all 

pathways will end at the same pointwise significance level but need not begin at the same 

pointwise significance level. The reason why all pathways end at 𝛼𝑚𝑎𝑥  is because, once a 

pathway is generated, it can never die, as elements of 𝒫 grow in size relative to its initial 

element.  
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Figure 3.7. (a) Geometric pathway of three significance patches, X, Y, and Z in the interval I = [α1, α5]. (b) 

The geometric evolution of the pathways showing how Z5 was created from the merging of X3 and  Z4 as α 

changed from α4 to α5. (c) The cumulative areas at each step of pathway for each geometric pathway, where 

the summation begins at α5, the initial point of the pathway, and the dotted line represents the critical level 

of cumulative areawise test.  

To illustrate the idea of a pathway, it is perhaps best to consider an ideal case (Fig. 

3.7). Consider, for example, three pathways X, Y, and Z whose lengths are, respectively, 

𝑟𝑥 = 4, 𝑟𝑦 = 4, and 𝑟𝑧 = 5. The pathway X can be written explicitly as  

𝑋1 ⊂ 𝑋2 ⊂ 𝑋3 ⊂ 𝑋4,                                                        (17) 

indicating that the patch exists at 𝛼1
𝑥 = 𝛼2, 𝛼2

𝑥 =  𝛼3, 𝛼3
𝑥 = 𝛼4, and 𝛼4

𝑥 = 𝛼5 =  𝛼𝑚𝑎𝑥. 

There also exists another pathway Y such that 𝑋2 =  𝑌2, 𝑋3 =  𝑌3, and 𝑋4 =  𝑌4 but whose 

initial element 𝑌1 is distinct from X. The pathways are thus distinct until 𝛼3, at which point 

the pathways merge, resulting in the remaining elements being identical (Fig. 3.7b). The 

third pathway Z, on the other hand, shares only one element with X and Y, merging at 𝛼5, 

so that Z represents a distinct pathway. Unlike the other pathways, the pathway Z begins at 

𝛼1 = 𝛼𝑚𝑖𝑛, implying that the pathway exists over the entire interval I.  

  The development of the areawise test will require the calculation of a test statistic 

for all pathways in the wavelet domain that end at the same pointwise significance level 

for a selected interval I. The test statistic used in this procedure will be the total sum of 

normalized areas 
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𝛾 =  ∑ 𝑔𝑗
𝑟
𝑗=1 ,                                                            (3.18) 

 one for each pathway. 

The calculation of the critical level for the test can be computed using Monte Carlo 

methods as follows: (1) fix I and a partition of the interval with uniform spacing and 

generate red-noise processes with the same autocorrelation coefficients as the input time 

series; (2) for each red-noise process generate synthetic wavelet power spectra and all 

corresponding pathways; and (3) for every pathway, compute 𝛾, resulting in a null 

distribution from which the desired critical level of test can be obtained. The critical level 

corresponding to the 5% significance level of the test, as an example, is the 95% percentile 

of the null distribution. 

3.4.2 Pointwise Significance Level Selection: Maximization Method  

 It will often happen that pathways under consideration are of different lengths so 

that it is not obvious what pointwise significance patches to report after the implementation 

of the testing procedure. The problem can be circumvented, however, using the following 

procedure: Let 

𝛾𝑗 =  ∑ 𝑔𝑟−𝑖
𝑟−𝑗
𝑖=0                                                                 (3.19) 

 be the cumulative sum associated with the 𝑗th element 𝑃𝑗 of a pathway with length r, and 

let 𝛾𝑐𝑟𝑖𝑡 be the critical level of the test; then, the appropriate pointwise significance level 

to use for a pathway is determined by the following rule: 

𝛾max  =  max
𝑗=1,2…,𝑟

𝛾𝑗 >  𝛾𝑐𝑟𝑖𝑡,                                               (3.20) 

where the statistic satisfying the above rule is denoted by 𝛾𝑚𝑎𝑥. The element of the pathway 

corresponding to 𝛾max   is the output of the testing procedure. Note that the output elements 

need not be located at the same pointwise significance levels, contrasting with the 

pointwise and geometric tests.  If, for a given pathway the statistic 𝛾𝑚𝑎𝑥 does not exist, 

then the pathway is deemed insignificant. It is also important to note that using the 

inequality (20) guarantees that the appropriate number of pathways will be deemed 

insignificant if the null hypothesis is known to be true, the reason for which is that if M 
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pathways have statistics 𝛾 such that 𝛾 > 𝛾𝑐𝑟𝑖𝑡, then there also must exist M statistics 𝛾𝑚𝑎𝑥 

satisfying the inequality (3.20). In other words, the sums 𝛾 must have crossed the critical 

level at some point in the pathways, or, otherwise, they would have not been deemed 

significant.  

3.4.3 Application to Ideal Pathways  

The testing procedure is now demonstrated using an ideal case. For the pathway X 

shown in Fig. 3.7 the test statistic at 𝛼5 is equal to the area of a single patch in the pathway, 

i.e. 

𝛾𝑥 =  𝐴4
𝑥,                                                           (3.21) 

where 𝐴𝑗
𝑥 denotes the area of a pathway element at 𝛼𝑗

𝑥. The test statistic at 𝛼1
𝑥, on the other 

hand, is the sum of four areas  

𝛾𝑥 =  𝐴1
𝑥+𝐴2

𝑥 + 𝐴3
𝑥 + 𝐴4

𝑥                                                   (3.22) 

so that the test statistic reaches its maximum value at the smallest pointwise significance 

level for which the pathway exists. In fact, all pathways will satisfy this property. The 

evolution of the patch can be viewed as a shape changing with time as shown in Figure 

3.7b. Viewing 𝛼5 as a time parameter, one can say that X merges with a large patch at time 

𝛼5 and first appears at time 𝛼2. The evolution of the test statistic is shown in Figure 3.7c, 

in which the test statistic increases with decreasing 𝛼𝑗 such that its maximum value is 

attained at 𝛼2 .  

Now consider the pathway Y, whose maximal test statistic is similar to that of X except that 

𝐴2
𝑦

 differs from 𝐴2
𝑥. According to Fig. 3.7b, the pathways evolved identically from 𝛼3 to 

𝛼5, merging at 𝛼3. As shown in Fig. 3.7c, the evolution of 𝛾𝑦 only differs slightly from that 

of 𝛾𝑥 and also represents a significant pathway. For both X and Y, the condition 𝛾𝑚𝑎𝑥  > 

𝛾𝑐𝑟𝑖𝑡 is satisfied at 𝛼3 so that a single patch at 𝛼3 will be the output of the testing procedure, 

not the two patches representing distinct elements of X and Y at 𝛼2. As will be shown in 

Sect. 3.4.6, the overall effect of this merging process is to enhance the detection of signals.  
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For the pathway Z, the maximum value of the test statistic can be decomposed into 

five summands, i.e. 

𝛾𝑧 =  𝐴1
𝑧+𝐴2

𝑧 + 𝐴3
𝑧 + 𝐴4

𝑧 + 𝐴5
𝑧 .                                          (3.23) 

The pathway Z, being longer than X and Y, therefore has an additional pointwise 

significance level to allow the test statistic to exceed the critical level of the test. However, 

the elements of the pathway have smaller normalized areas so that the pathway is not 

significant. The length of a pathway is thus not the only factor influencing the significance 

of a pathway, as the size of elements is also important.  

3.4.4 The Null Distribution 

Recall from Section 3.3.2 that, for patches generated from red noise, the merging 

of patches is not random, with typical lifetimes of patches following a non-uniform 

distribution, favoring shorter lifetimes. Therefore, if the test statistic is proportional to the 

lifetime of patches, one can expect the test statistic to follow a similar distribution to that 

of persistence indices, where the smallest values of 𝛾 are preferred. To test this hypothesis, 

1000 wavelet power spectra of red-noise processes with fixed autocorrelation coefficients 

were generated and the cumulative area of all pathways in each wavelet power spectra was 

computed. In the experiments, 𝛼𝑚𝑖𝑛 = 0.02, 𝛼𝑚𝑎𝑥 = 0.82, and Δ𝛼, the discrete spacing 

between adjacent pointwise significance levels, is set to 0.02 to make calculations less 

computationally expensive. The results for the Morlet, Paul, and Dog wavelets are shown 
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in Figure 3.8. 

 

Figure 3.8. (a) Null distribution of γ for the Morlet wavelet obtained by generating 10,000 geometric 

pathways under the null hypothesis of red-noise, where the red-noise processes were of length 1000 and had 

lag-1 autocorrelation coefficients equal to 0.5. (b) Percentiles of a theoretical exponential distribution with 

mean 6.5 plotted as a function of the percentiles calculated from the distribution shown in (a). (c) – (d) Same 

as (a) – (b) but for the Paul wavelet. (e) – (f) Same as (a) – (b) except for the Dog wavelet.  

The distribution of 𝛾 for the Morlet wavelet is generally similar to the shape of the 

distribution for the persistence indices for 𝐻0 (Fig. 3.6b), where the smallest values of 𝛾 

are preferred. It turns out that the distribution of 𝛾 for the Morlet wavelet can be well 

described by an exponential distribution. Using the method of maximum likelihood 

(Weerahandi, 2003), a theoretical exponential distribution was fitted to the empirical 

distribution, where the empirical distribution was found to be best described by an 

exponential distribution with mean 6.5. To show that the theoretical distribution models 

the empirical distribution, the percentiles of a theoretical exponential distribution with 

mean 6.5 were plotted as a function of the percentiles of the empirical distribution (Fig. 

3.8b). The linear relationship between the percentiles shown in Fig. 3.8b indicates that the 

theoretical distribution well models the empirical distribution, with the 95% percentiles 

only differing by 1.0.  
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The results for the Paul wavelet are generally similar except that the mean value of the test 

statistic was found to be smaller with a value of 6.2. The distribution of the test statistic, 

unlike that for the Morlet wavelet, was found to be poorly modeled by an exponential 

distribution, with the empirical distribution generally having larger values than those 

predicted by a theoretical exponential distribution; this difference was more pronounced 

for larger 𝛾.  

The results for the Dog wavelet are shown in Fig. 8e. The null distribution differs from that 

for the Morlet and Paul wavelets, with the mean value of the distribution being 3.4. This 

result is perhaps not surprising; Fig. 3.6 shows that the lifetimes of patches generated using 

the Dog wavelet have larger persistence indices attributed to how patches die at larger 𝛼 

compared to that of the Morlet and Paul wavelets, resulting from the lack of merging with 

the essential class. The delayed merging implies that the area of patches must be smaller 

relative to that of the Morlet and Paul wavelets for large 𝛼 to prevent merging with other 

patches. The effect is to generate a smaller cumulative sum. The null distribution, unlike 

that for the Morlet wavelet, was not found to be well-described by a theoretical exponential 

distribution.  

 As will be shown in Section 3.4.6, the implementation of the proposed testing 

procedure will allow small patches that are seemingly indistinguishable from noise to 

emerge, allowing the recovery of a signal that has been contaminated by noise.  

3.4.5 Computational Remarks 

 An important parameter in the areawise test is ∆𝛼, the spacing between pointwise 

significance levels. It is critical that ∆𝛼 is chosen to be small enough to sample the merging 

of patches so that, for example, the null distribution can be representative of the null 

hypothesis. If ∆𝛼 is set too large, then a pathway may be missed entirely if it is born 

between two adjacent pointwise significance levels. On the other hand, if ∆𝛼 is too small, 

then the test will become computationally expensive, requiring the calculation of more 

normalized areas. The distribution of the persistence indices for 𝐻0 suggests that ∆𝛼 =

0.01 because the modes of the distributions are 0.01. However, it will be shown in Section 

3.4.6 that the results of the areawise test do not differ if one chooses ∆𝛼 = 0.02. 
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 Another important parameter is 𝛼𝑚𝑎𝑥. It would be computationally inefficient if the 

testing procedure had to be performed on pathways whose end points are, for example, 

𝛼𝑚𝑎𝑥 = 0.99. Moreover, as shown in Fig. 3.5b, the number of holes increases for 

increasing 𝛼, which would increase the computational costs associated with the calculation 

of patch areas for large 𝛼. The reason for the increase in computational costs is that the 

areas of the holes need to be subtracted from the area the patches would have if they did 

not contain holes. To circumvent the problem, properties of the areawise test can be 

assessed at peaks of the curves shown in Fig. 3.5a so that results for other end points can 

be inferred. For the Morlet wavelet, the peak occurs at 𝛼 = 0.18 so that 𝛼𝑚𝑎𝑥 = 0.18. To 

the left of the maximum, the average number of patches are equal to that of some pointwise 

significance level to the right of the maximum. However, patches to the right of the 

maximum have larger areas so that choosing 𝛼𝑚𝑎𝑥 >  0.18 would result in the testing 

procedure detecting larger patches as significant. The same reasoning holds for the Paul 

and Dog wavelets except that the maximum of the curve for the Dog wavelet is 𝛼𝑚𝑎𝑥 =

0.5. The sensitivity of the testing procedure to 𝛼𝑚𝑎𝑥 is discussed in Section 3.4.6.  

 Fig. 3.6 also suggests that 𝛼𝑚𝑎𝑥 need not be any larger than 0.7 for the Morlet 

wavelet because all patches have merged with the essential class before that point, at least 

for red-noise processes. Thus, for 𝛼𝑚𝑎𝑥 > 0.7, patches arising from signals cannot be 

distinguished from those generated from noise because all patches have merged into a 

single, large patch. A similar argument holds for the Paul wavelet, but, for the Dog wavelet, 

all patches merge at a larger 𝛼𝑚𝑎𝑥.  

3.4.6 Comparison with geometric test 

With the areawise test now developed, it will be useful to assess the statistical 

power of the test relative to that of the geometric test. The first aspect of the assessment 

will be to quantify how well both tests detect true positive results. To do so, let  

𝑥(𝑡) = 𝐴 sin(2𝜋𝑓𝑡) + 𝑤(𝑡)                                                     (3.24) 

be a sinusoid with amplitude A, frequency f, and additive Gaussian white noise w(t). The 

goal will be to evaluate the ability of both tests to detect true positives within a particular 

period band. A theoretical patch to which the ability of the geometric and areawise tests 
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were compared was constructed as follows: (1) the time series x(t) for all 𝑡 ∈ [0, 500] was 

generated but with no additive white noise; (2) the wavelet power spectra of x(t) was 

computed and the 5% pointwise significance test was performed on the wavelet power 

spectrum; and (3) the width of the significance patch in the wavelet power spectrum was 

calculated at t = 250 where edge effects are negligible. The theoretical patch calculated 

using the Morlet wavelet is indicated by dotted lines in Fig. 3.9, where the theoretical patch 

is a rectangle of fixed width extending from t = 0 to t = 500. In all experiments, 𝛼𝑚𝑎𝑥 = 

0.18 and Δ𝛼 = 0.02, but implications of other choices are discussed at the end of the 

section. 

 

Figure 3.9. (a) Cumulative areawise test applied to a sinusoid with a frequency of 0.8 and amplitude equal to 

0.8. Signal-to-noise ratio is 1.0. Contours represent patches that are elements of 5% significant pathways. 

Dotted lines represent the upper and lower boundaries of a theoretical patch obtained by generating the 

wavelet power spectrum of a pure sine wave and calculating the width of the patch at t = 250. (b) Same as 

(a) except for the geometric test with α = 0.05 and αgeo = 0.05. Contours represent patches that are 

geometrically significant.  

To assess the ability of the tests to detect true positives, the area of patches deemed 

significant by the tests were compared to the total area of the theoretical patch. More 

specifically, if 𝑃𝑔𝑒𝑜 is the union of all pointwise significance patches at 𝛼 that are 

geometrically significant at the 𝛼𝑔𝑒𝑜 level and 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 is the theoretical patch, then 

𝑟𝑎 =  
𝐴𝑃𝑔𝑒𝑜∩𝑃𝑡ℎ𝑒𝑜𝑟𝑦

𝐴𝑃𝑡ℎ𝑜𝑒𝑟𝑦

                                                         (3.25) 
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represents the areal fraction of 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 detected by the geometric test, where  𝐴𝑃𝑔𝑒𝑜∩𝑃𝑡ℎ𝑒𝑜𝑟𝑦
 

denotes the area of 𝑃𝑔𝑒𝑜 ∩ 𝑃𝑡ℎ𝑒𝑜𝑟𝑦 and 𝐴𝑃𝑡ℎ𝑜𝑒𝑟𝑦
 denotes the area of 𝑃𝑡ℎ𝑒𝑜𝑟𝑦. If 𝑟𝑎 = 1, then 

the test detected all of the true positive results that are known by construction. Small values 

of 𝑟𝑎 indicate that the tests performed poorly, detecting only a fraction of the theoretical 

patches to be significant. A similar construction can be made for the areawise test by 

replacing 𝑃𝑔𝑒𝑜 with 𝑃𝑐. Fig. 3.9a illustrates the procedure for the areawise test when f = 0.8, 

A = 0.8, and the signal-to-noise ratio (defined below) equals 1.0. As indicated by the thick 

black contours, the areawise test was able to detect 30% of the true positives comprising 

the theoretical patch, whereas Fig. 3.9b shows that the geometric test was only able to 

detect 20% of the true positives. It will be necessary to compute N = 1000 values of 𝑟𝑎 for 

different values of f and signal-to-noise ratios of the Gaussian white noise to determine if 

the tests truly perform differently. In the following experiments, the signal-to-noise ratio 

is defined as  

𝜎 = 10log (
𝑝𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑛𝑜𝑖𝑠𝑒
),                                                               (3.26) 

where  

𝑝𝑠𝑖𝑔𝑛𝑎𝑙 =   
𝐴2

2
,                                                                (3.27) 

𝑝𝑛𝑜𝑖𝑠𝑒 is the average power of the Gaussian white noise, and 𝜎 is measured in decibels 

(DB). In the discussion below the results for the Morlet are presented first; results for the 

Paul and Dog wavelets are discussed at the end of the section. It is also noted that because 

𝜎 and A do not vary independently there is no need to perform different experiments for 

different values of A. For the experiments, A was set to 1.0.  
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Figure 3.10. The ensemble mean ra as a function of the signal-to-noise to ratio for the areawise test with αc =

0.05 and the geometric test with αgeo =  0.05. Gray shading represents the 95% confidence interval and all 

means for the geometric test are significantly different at the 5% level from the means for the areawise test 

except for those corresponding to the α = 0.01 curve for signal-to-noise ratios less than -1.5. The confidence 

intervals and statistical significance were obtained by the bootstrap method (Efron, 1979). The data for each 

signal-to-noise-ratio were sampled with replacement 1000 times to generate a distribution of bootstrap 

replicates, from which 95% confidence intervals were obtained. Two ensemble means were said to 

significantly different at the 5% level if their 95% confidence intervals did not intersect.  

In the first experiment, the areawise significance (denoted by 𝛼𝑐, herreafter) was 

set to 0.05, 𝛼𝑔𝑒𝑜 = 0.05, and 𝛼 = 0.01, 0.05, 0.1. The signal-to-noise ratio for the Gaussian 

white noise was varied from -5 DB to 5 DB. The results are shown in Fig.  3.10. For both 

tests, the ability to detect true positives increased with increasing signal-to-noise level. At 

low signal-to-noise ratios, the tests performed similarly, detecting on average 10% of true 

positives. On the other hand, differences between the test performances became larger as 

the signal-to-noise ratio was increased; in fact, the areawise test outperformed the 

geometric test regardless of the chosen pointwise significance levels when 𝜎 ≥ −2.5 DB. 

The results indicate that the areawise test is particularly useful in low noise situations but 

one can expect the test to detect more true positives even in high noise conditions. It also 

worth noting that the performance of the geometric test depended strongly on the chosen 

pointwise significance level, especially when the signal power was high. 

A second experiment was conducted where 𝛼𝑐 = 0.01 and 𝛼𝑔𝑒𝑜 = 0.01. The same 

pointwise significance levels as the first experiment were chosen and the range of signal-
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to-noise ratios was also the same. The results are presented in Fig. 3.11. Note that the shape 

of the curves for both tests are the same as the first experiment, where greater true positive 

detection is preferred for large signal-to-noise ratios. However, both tests detected fewer 

true positives, consistent with how the significance levels of the tests were increased. The 

relationships between the tests, like for experiment 1, depended on the signal-to-noise ratio; 

for low signal-to-ratios the performance of the tests are similar, whereas for high signal-

to-noise ratios differences between 𝑟𝑎 for the areawise test and 𝑟𝑎 for the geometric 

increases. All the results were found to be statistically significant.  

 

Figure 3.11. Same as Figure 3.10 except with αc = 0.01 and αgeo =  0.01. All means for the geometric test 

are significantly different at the 5% level from the means for the areawise test 

Additional experiments were performed using different values of f to determine if 

the frequency at which patches are located affects the performances of the areawise and 

geometric tests. True positive detection, for a fixed 𝜎, was generally found to increase for 

larger f, though the areawise test was still found to detect more true positives. The 

behavioral assessments of both tests for f < 0.8 required the use of synthetic time series 

whose lengths were greater than 500, as patches lengthened in the time direction for lower 

frequencies and the COI impacts became more pronounced. The array of experiments 

concluded that the areawise test should be the preferred method for signal detection.  
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 Another set of experiments were conducted to evaluate how the areawise test 

detects false positives relative to the geometric test. In the first experiment, 1000 wavelet 

power spectra arising from red-noise processes of length 1000 with equal lag-1 

autocorrelation coefficients were generated.  For each wavelet power spectra, the geometric 

and areawise tests were applied at the 0.05 level and the pointwise significance level was 

set to 0.05. The results were found to be independent of the chosen lag-1 autocorrelation 

coefficient, so only the results for the case when the lag-1 autocorrelation coefficient was 

set to 0.5 are presented. The ratio between the number of false positive results for the 

geometric and areawise tests for each wavelet power spectra was then computed. The 

average ratio was found to be 0.08, implying that one can expect more false positive results 

for the areawise test relative to the geometric test. However, in most cases, the increase in 

the number of false positive results with respect to the geometric test was small compared 

to the increase in true positive detection (Figs. 3.10 and 3.11), suggesting that the areawise 

test had greater overall statistical power. Note that spurious patches arising from the 

areawise test will have generally larger areas so that results from the test should be 

interpreted carefully.  

The above experiment was repeated for different pointwise significance levels. The 

experiments indicated that the difference between false positive detection between both 

tests decreased as 𝛼 increased, the reason for which is that the number of false positive 

results for the geometric test for a fixed 𝛼𝑔𝑒𝑜 will increase until 𝛼 = 0.18, the point at 

which the number of patches generally peaks (Fig. 3.5a). For 𝛼 > 0.18, the number of 

spurious patches may decrease, but the areas of the spurious patches resulting from the 

geometric test will be larger. A similar argument would hold if 𝛼𝑐 and 𝛼𝑔𝑒𝑜were increased 

or decreased by the same amount.  

 All the above experiments were performed with the Paul and Dog wavelets and the 

theoretical 5% pointwise significance patch was adjusted to account for the different scale- 

and time-localization properties of the wavelets, where the corresponding theoretical 

patches were found to be wider in scale compared to the Morlet wavelet. The results from 

the experiments were qualitatively similar to that of the Morlet wavelet, as the areawise 

test detected more true positives than the geometric test for both the Paul and Dog wavelets. 



66 
 

Like for the Morlet wavelet, the differences in performances were more pronounced for 

larger 𝜎. The array of experiments provides evidence that the areawise test has greater 

statistical power than the geometric test regardless of the chosen analyzing wavelet.  

 All the above experiments were conducted for different values of Δ𝛼. For Δ𝛼 < 

0.02, the results of the experiments were virtually identical. On the other hand, if Δ𝛼 >

0.03, the percentage of true positives detected by the areawise test decreased. The results 

suggest that Δ𝛼 should be chosen to be no larger than 0.02 to ensure that true positive 

detection is maximized. 

 The parameter 𝛼𝑚𝑎𝑥 was found to strongly influence the performance of the 

areawise test. For 𝛼𝑚𝑎𝑥 > 0.18 and 𝛼𝑐 = 0.05, the number of true positives detected 

increased and the number of false positives decreased relative to the geometric test with 

𝛼𝑔𝑒𝑜 = 0.05. However, the normalized areas of the spurious patches resulting from the 

areawise test with 𝛼𝑐 = 0.05 or 𝛼𝑐 = 0.01 were found to be 2-10 times larger than those 

resulting from the geometric test, making spurious features appear significant. The problem 

was remedied by decreasing 𝛼𝑐, but this adjustment was found to be the same as increasing 

𝛼𝑚𝑎𝑥. For 𝛼𝑚𝑎𝑥 < 0.18, the true and false positive detection of the areawise test for 𝛼𝑐 =

0.05 approached that of the geometric test until 𝛼𝑚𝑎𝑥 = 0.05, at which point they were 

approximately equal.  

3.5. Climate Applications  

 To determine if any features in the wavelet power spectra of the AMO, NAO, Niño 

3.4, and PDO time series are deterministic or stochastic, the areawise test was performed 

on geometric pathways in the wavelet power spectra at the 0.01 level. A red-noise 

background spectrum was used for each, with 𝛼𝑚𝑎𝑥 = 0.18, 𝛼𝑚𝑖𝑛 = 0.02, and Δ𝛼 = 0.02. 

The wavelet power spectrum for the AMO index is shown in Fig. 3.12a. Although the 

AMO is usually characterized by its multi-decadal variability, no areawise significant 

wavelet power coefficients were detected at periods greater than 24 months, suggesting 

that the variability results from stochastic processes. In contrast, from 1860 to 1940, 

areawise-significant wavelet power coefficients were detected, primarily in the 2-16 month 
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period band. After 1940, no areawise-significant wavelet power coefficients were 

identified at any time scale. 

 The wavelet power spectrum of the NAO index is shown in Fig. 3.12b. Only a few 

regions of areawise significance were detected: one at a period of 2 months and 1900, a 

second one at a period of 6 months and 1880, and a third one located at a period of 100 

months and 1870. The lack of areawise significance suggests that the NAO is a red-noise 

process with no preferred time scale, consistent with Feldstein (2002).  

 

Figure 3.12. (a) The application of the cumulative areawise test to the AMO index (a) the NAO index, (c) the 

Niño 3.4 index, and (d) the PDO index. αc was set to 0.01 in all cases and contours enclose regions of 1% 

areawise significance.  

The wavelet power spectrum for the Niño 3.4 index, on the other hand, does 

indicate potential predictive capabilities (Fig. 3.12c). There are two notable features, one 

extending from 1870 to 1920 in the 16-64 month period band and another one extending 

from 1960 to 2014 in the 8-64 month period band. Perhaps just as interesting is the deficit 

in areawise significance from 1920 to 1960 in the 8-64 month period band. The deficit 

could be the result of the 2-7 year mode being modulated by a decadal ENSO mode, a 

nonlinear paradigm (Timmermann, 2002). Such a modulation would imply that the 

behavior of the 2-7 year mode is determined by the phase of the decadal mode, where, for 

example, more extreme El Niño phases would be favored if the decadal mode is in a 

positive regime. On the other hand, results shown in Fig. 3.12c show that neither the 
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decadal nor the multi-decadal variability exceed a red-noise background so modulations 

would be difficult to predict.  

The wavelet power spectrum of the PDO index is shown in Fig. 3.12d. Like the AMO 

index, there is enhanced variance at multi-decadal time scales but the variance does not 

exceed a red-noise background. Areawise-significant regions, however, were detected in 

the 2-8 month period band from 1900 to 1960. The results indicate that the PDO is a red-

noise process, consistent with prior work showing that the PDO results from the oceanic 

integration of atmospheric white-noise stochastic forcing (Newmann et al., 2003).   

3.6. Conclusions  

An areawise test was developed for assessing the significance of features in wavelet 

power spectra. The test was generally found to have greater statistical power than the 

geometric test except possibly under high-noise situations, in which case the tests were 

found to perform similarly. The main advantage of the new testing procedure is that the 

results are no longer dependent on the chosen pointwise significance level. In contrast, the 

geometric test results were found to be very sensitive to the chosen pointwise significance 

level, making it difficult for researchers to decide what patches are significant and what 

patches are not significant. In particular, the cumulative areawise test was found to detect 

more true positives relative to the geometric test for some common pointwise and 

geometric significance levels. The large increase in true-positive detection of the 

cumulative areawise test was also accompanied by a small increase in false-positive 

detection compared to the geometric test performed at the 5% level, resulting in the 

areawise test having greater statistical power. The difference between the tests, however, 

was found to decrease for low signal-to-noise ratios, indicating that there are still 

deterministic features that are, in principle, indistinguishable from background noise.  

The results from the climate-mode analysis suggest that the predictability of the AMO, 

PDO, and NAO is limited and that the multi-decadal variability of the AMO and PDO is 

the result of a stochastic process. The Niño 3.4 index, by contrast, was found to have 

deterministic features, implying that future states of ENSO may be predictable. Such 

predictability is important given that ENSO has regional- to global-scale impacts on 

precipitation and temperature. The ability to predict future changes of regional climate 
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thus, to some extent, depends on the ability to predict ENSO. However, currently, the future 

state of ENSO as determined by climate models is uncertain, with some climate models 

suggesting large changes and others indicating no change at all (Latif and Keenlyside, 

2008). 

A Matlab software package written by the author to implement the cumulative areawise 

test is available at justinschulte.com. 
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Chapter 4 

Wavelet Analysis for Non-stationary, Non-linear Time 

Series 

4.1. Introduction 

Spectral analysis is a tool for extracting embedded structures in a time series. In 

particular, Fourier analysis has been used extensively by researchers for extracting 

deterministic structures from time series but is incapable of detecting nonstationary 

features often present in geophysical time series. Wavelet analysis can extract transient 

features embedded in time series, with a wavelet power spectrum representing variance 

(power) of a time series as a function of time and period. Since the seminal work of 

Torrence and Compo (1998), wavelet analysis has been applied extensively to geophysical 

time series such as the indices for the North Atlantic Oscillation (Olsen et al., 2012), Arctic 

Oscillation (Jevrejeva et al., 2003), Pacific Decadal Oscillation (Macdonald and Case, 

2005; Newmann et al., 2003), El-Niño/Southern Oscillation (ENSO; Torrence and 

Webster, 1999),  Pacific-North American Pattern, and West Pacific pattern (Gan et al., 

2007). The application of wavelet coherence and cross-wavelet analyses (Grinsted et al., 

2004), moreover, has proven useful in relating geophysical time series to other time series 

(Jevrejeva et al., 2003; Gan et al., 2007; Labat, 2010; Lee and Lwiza, 2008).  

Many statistical methods, including power and cross-spectral analyses, rely on the 

assumption that the variable in question is Gaussian distributed (King, 1996). For a linear 

system in which the output is proportional to the input, the first- and second-order 

moments, the mean and variance, can fully describe the distribution of a process. In the 

frequency domain, by analogy, the variable can be fully described by the power spectrum, 

the decomposition of variance as a function of frequency. Suppose, however, that the 

distribution is non-Gaussian so that higher-order moments such as skewness and kurtosis 

exist. In this case, the mean and variance, while useful, are unable to fully describe the 

distribution in question. In a time series context, non-Gaussian distributions can arise from 

nonlinear systems, systems for which the output is no longer simply proportional to the 

input. For a nonlinear system, if the input is the sum of two sinusoids with different 

frequency components the output will contain additional frequency components 



71 
 

representing the sum and difference of the input frequencies (King, 1996). In such cases, 

it is necessary to examine the decomposition of higher-order moments in frequency space.   

The frequency decomposition of the third-order moment, for example, results in a 

bispectrum or skewness function that measure deviations from Gaussianity (Nikias and 

Raghuveer, 1987; King, 1996). In fact, Hinich (1985) developed a bispectral test to 

determine if a time series is non-Gaussian and nonlinear. In some situations, higher-order 

nonlinearities such as cubic nonlinearities may exist, in which case the trispectrum or other 

polyspectra would have to be used (Collis et al., 1998).  

 Another advantage of higher-order spectral analysis is that the cycle geometry of 

oscillations, such as asymmetry with respect to a horizontal axis (skewed oscillation) or 

with respect to a vertical axis (asymmetric oscillation) can be quantified using the biphase. 

A pure sine wave, for example, is neither skewed nor asymmetric, whereas a time series 

resembling a saw-tooth is asymmetric. Skewed and asymmetric cycle geometry can 

identify, for example, abrupt climatic shifts, sudden shifts in the climate system that exceed 

the magnitude of the background variability (King, 1996). Abrupt climate shifts have 

occurred numerous times in the past and have dire impacts on ecological and economic 

systems (Alley et al., 2005). An understanding of past abrupt climate shifts is essential to 

understanding future climate change and so there is a need to quantify nonlinearities 

present in climatic oscillations.  

The Quasi-biennial Oscillation (QBO), as another example, has been shown to behave 

nonlinearly, transitioning from easterly phases to westerly phases more rapidly than from 

westerly to easterly phases (Lu et al., 2009). Another source of asymmetry in the QBO 

time series arises from the westerly shear zone descending more regularly than the easterly 

shear zone. Asymmetries in the QBO time series are not well-captured by linear methods 

such as linear principal component and singular spectrum analyses (Lu et al., 2009) but are 

better captured using, for example, nonlinear principal component analysis (Hamilton and 

Hsieh, 2002). Another example of a nonlinear time series is the sunspot cycle, which 

undergoes an 11-year oscillation characterized by asymmetric cycle geometry, with solar 

maxima generally rising faster than they fall, indicating the presence of nonlinearities 

(Moussas et al., 2005; Rusu, 2007).  ENSO, a climate phenomenon with regional- to global-
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scale impacts, has also been shown to exhibit nonlinearities (Timmermann, 2003). The 

presence of nonlinearities and possible nonstationarities in the QBO, ENSO, and sunspot 

time series makes traditional Fourier and wavelet analysis inadequate for feature 

extraction, underscoring the need to develop methods for quantifying nonlinearities in a 

nonstationary geophysical setting. 

The application of higher-order wavelet analysis has been rather limited compared to 

traditional wavelet analysis (van Millagan et al., 1995; Elsayed, 2006). One geophysical 

application of higher-order wavelet analysis is to oceanic waves (Elsayed, 2006), which 

was found to be capable of identifying nonlinearities in wind-wave interactions. However, 

the study lacked rigorous statistical significance testing, highlighting the need to develop 

significance testing methods for higher-order wavelet analysis to aid physical interpretation 

of results. The finite length of time series, as an example, would result in nonzero values 

of bicoherence even for a Gaussian process. Thus, one needs to assess the confidence with 

which the estimated bicoherence exceeds a noise background. However, the number of 

bicoherence estimates to which the statistical test is applied will be large and multiple 

artifacts will result. The multiple-testing problem was already identified for traditional 

wavelet analysis (Maraun et al., 2007; Schulte et al., 2015). There is therefore a need to 

apply statistical methods controlling false positive detection. It is also noted that the 

bicoherence spectra calculated are only sample estimates of the true bicoherence spectra. 

As a result, it is important to calculate confidence intervals corresponding to the sample 

estimates, which represent a range of plausible values for the sample estimates.  

Another problem with the application higher-order wavelet analysis is selection of a 

time interval on which to calculate the high-order wavelet quantities. Such an approach is 

subjective and the result of the analysis may depend on the time interval chosen. The time 

interval selection problem highlights the need to develop a local bicoherence spectrum, 

which can be computed without choosing a time interval. Such an approach has already 

been adopted in wavelet coherence analysis (Grinsted et al., 2004).  

Additionally, properties of the biphase have only been examined for Fourier-based 

bispectral analysis (Elgar and Sebert, 1989; Maccarone, 2013) and its usefulness in higher-

order wavelet analysis has yet to be examined. For nonstationary time series, the biphase 
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and cycle geometry corresponding to the time series may change with time, underscoring 

the need to develop a local biphase spectrum.  

In this paper, higher-order wavelet analysis is put in a statistical framework and applied 

to the QBO time series to demonstrate the insights afforded by the methods. Before 

describing higher-wavelet analysis, a brief overview of wavelet analysis is first presented 

in Sect. 4.2. Higher-order wavelet analysis is described Sect. 4.3 and a new local 

autobicoherence spectrum is introduced, eliminating the selection of a time interval on 

which to calculate nonlinearities properties of time series. The new and existing methods 

are applied to an ideal time series and the QBO index. In Section 4.4, a new procedure for 

estimating confidence intervals of global autobicoherence quantities is developed to 

estimate uncertainties in the sample autobicoherence spectra. The application of the new 

procedure to the sample autobicoherence spectrum of the QBO time series is then used to 

further assess confidence in results.  

4.2. Wavelet Analysis  

The idea behind wavelet analysis is to convolve a time series with a function satisfying 

certain conditions. Such functions are called wavelets, of which the most widely used is 

the Morlet wavelet, a sinusoid damped by a Gaussian envelope:  

𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                             (4.1) 

where 𝜓0 is the Morlet wavelet, 𝜔0 is the dimensionless frequency, and η is the 

dimensionless time (Torrence and Compo, 1998; Grinsted et al., 2004). In practical 

applications, the convolution of the wavelet function with a time series X = (𝑥𝑛; n = 1, ... , 

N) is calculated discretely using  

 𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                     (4.2)     

where 𝛿𝑡 is a uniform time step, s is scale, 𝜂 = 𝑠 ⋅ 𝑡, and 𝑊𝑛
𝑋(𝑠) is the wavelet transform. 

The wavelet power is given by |𝑊𝑛
𝑋(𝑠)|2  (Torrence and Compo, 1998; Grinsted et al., 

2004). For the Morlet wavelet with 𝜔0 = 6, the wavelet scale and the Fourier period 𝜆 are 
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approximately equal (𝜆 = 1.03𝑠). A more detailed discussion of wavelet analysis can be 

found in Torrence and Compo (1998).  

Shown in Fig. 4.1a is the time series of the QBO index and shown in Fig. 4.11b is 

the corresponding wavelet power spectrum. The QBO data from 1950-2013 were obtained 

from the Climate Prediction Center. The QBO index is defined as the zonal average of the 

30 hPa zonal wind at the equator. As such, a positive index indicates westerly winds and a 

negative index indicates easterly winds. The most salient feature of the time series is the 

rather regular periodicity of approximately 28 months. Also note the asymmetry between 

the negative and positive phase, with the negative phases generally being stronger. The 

periodic behavior of the QBO was corroborated by examining the wavelet power spectrum. 

A well-defined 28-month periodicity is evident, with the associated wavelet power 

changing little throughout the study period.  

 

Fig. 4.1. (a) The QBO index and (b) the corresponding wavelet power spectrum. Contours enclose regions 

of 5% statistical pointwise significance (Torrence and Compo, 1998). Light shading represents the cone of 

influence, the region in which edge effects cannot be ignored. 

There are also secondary features located at a period of approximately 14 months, 

primarily from 1985 to 2013. The appearance of significant power at a period of 14 months 

also coincides with most of the largest negative phases of the QBO. Such a correspondence 

may not have been a coincidence; the 14-month mode and the 28-month mode may have 
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interacted constructively to generate large negative events but interacted destructively to 

create smaller positive events. However, additional tools are needed to confirm if the 

periodicities are interacting and to understand how the interactions were related to the 

behavior of the QBO.  

4.3. Higher-order Wavelet Analysis 

4.3.1 Wavelet-based Autobicoherence 

Higher-order spectral analysis provides the opportunity to quantify nonlinearities and 

allows the detection of interacting oscillatory modes within a time series. More 

specifically, nonlinearities are quantified using bicoherence, a tool for measuring quadratic 

nonlinearities, where quadratic nonlinearities imply that for frequencies 𝑓1, 𝑓2, and 𝑓3 and 

corresponding phases 𝜙1, 𝜙2, and 𝜙3 the sum rules 

𝑓1 + 𝑓2 = 𝑓3                                                         (4.3) 

and 

𝜙1 + 𝜙2 = 𝜙3                                                        (4.4) 

are satisfied. Whereas Eq. (4.3) implies frequency coupling, Eq. (4.4) implies phase 

coupling. To see from where Eqs. (4.3) and (4.4) originate, let  

X(t) = sin(2π𝑓1t + 𝜙1) + sin(2π𝑓2t + 𝜙2)                                   (4.5) 

be the input into a system whose output is related to the input by 

𝑌(𝑡) =  𝑋(𝑡) +  𝜀𝑋(𝑡)2 + 𝑤(𝑡).                                         (4.6) 

The multiplicative factor 𝜀 is used to represent the contribution of the nonlinear component 

of the signal and w(t) is Gaussian white noise. Note that if 𝜀 = 0, then the system is linear 

because the output contains the same frequency components as the input.  The substitution 

of Eq. (4.5) into Eq. (4.6) results in  

Y(t) = sin(2π𝑓1t + 𝜙1) + sin(2π𝑓2t + 𝜙2) + 
𝜀

2
[1 − cos(2(2π𝑓1t +𝜙1)) 

                   −  cos(2(2π𝑓2t + 𝜙2)) + cos(2π(𝑓2 − 𝑓1)t + 𝜙2 − 𝜙1) 

                   −  cos(2π(𝑓1 + 𝑓2 )t + 𝜙1+ 𝜙2)] + w(t)                                             (4.7) 
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and thus the output has sinusoids with additional frequency components 2𝑓1, 2𝑓2, 𝑓2  

− 𝑓1, and 𝑓2 +𝑓1, which arise from the second term in right-hand side of Eq. (4.6).  

Unlike the power spectrum, which is the Fourier transform of the second-order 

moment of a time series, the bispectrum is defined as the double Fourier transform of the 

third-order moment, or, more generally, the third-order cumulant, i.e., 

 

𝑏𝑥𝑥𝑥(𝑓1, 𝑓2) =  ∫ ∫ 𝐶(𝑡1, 𝑡2
∞

−∞

∞

−∞
)𝑒−𝑖2𝜋(𝑓1𝑡1+ 𝑓2𝑡2)𝑑𝑡1𝑑𝑡2,                        (4.8) 

where C is the third-order cumulant, defined as 

𝐶(𝑡1, 𝑡2) = 𝑀3(𝑡1, 𝑡2) +  𝑀1[𝑀2(𝑡1) + 𝑀2(𝑡2) +  𝑀2(𝑡1 − 𝑡2)] + 2𝑀1
3            (4.9) 

and the 𝑡𝑖 are lags. If X(t) is zero-mean, then in Eq. (4.9), 𝑀1 = 𝐸[𝑋(𝑡)] = 0 denotes the 

first-order moment (mean), 𝑀2 = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝑡1)]   denotes the second-order moment 

(autocorrelation), and 𝑀3(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡)𝑋(𝑡 + 𝑡1)𝑋(𝑡 + 𝑡2)]  denotes the third-order 

moment (Nidal and Malik, 2013). Also note that for a zero-mean process, the third-order 

cumulant reduces to the third-order moment (Collis et al., 1998). A more useful quantity is 

the normalized version of the bispectrum, the autobicoherence spectrum (Collis et al., 

1998), which can be computed using the following: 

 

𝑏2(𝑓1, 𝑓2) =  
|𝑏𝑥𝑥𝑥(𝑓1,𝑓2)|2

𝐸[|𝑋𝑓(𝑓1)𝑋𝑓(𝑓2)|
2

]𝐸[𝑋𝑓|(𝑓1+ 𝑓2)|2]
 ,                                        (4.10) 

where 𝑏2(𝑓1, 𝑓2) is bounded by 0 and 1 by the Schwarz inequality and 𝑋𝑓 denotes the 

Fourier transform of X. 𝑏2(𝑓1, 𝑓2) can be interpreted as the fraction of power at 𝑓1 + 𝑓2 due 

to quadratic phase coupling among 𝑓1, 𝑓2, and 𝑓1 + 𝑓2 such that the sum rule 𝑓1 + 𝑓2 =

 𝑓3 is satisfied (Elgar and Chandran, 1993). For a more in-depth discussion of higher-order 

spectral analysis the reader is referred to Nikias and Raghuveer (1987).  

Phase information and cycle geometry can be obtained from the biphase, which is 

given by  
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𝜓 =  𝑡𝑎𝑛−1 (
𝐼𝑚(𝑏𝑥𝑥𝑥)

𝑅𝑒(𝑏𝑥𝑥𝑥)
) =  𝜙1 + 𝜙2 −  𝜙3.                                       (4.11) 

It was noted by Maccarone (2013), however, that the biphase should be defined on the full 

2𝜋 interval and thus in this paper the four-quadrant inverse tangent is computed and not 

the inverse tangent as shown above. By doing so, statistically significant autobicoherence 

detected together with the biphase can be used to quantify cycle geometry. A biphase of 0° 

indicates positive skewness and a biphase of 180° indicates negative skewness (Maccarone, 

2013). An example of a skewed oscillation time series with biphase close to 0° is shown in 

Fig. 4.2a. Mathematically, the time series is written as  

X(t) = ∑
1

𝑗
cos[0.1𝑗𝑡 + 𝑎(𝑗 − 1)]40

𝑗=1 ,                                         (4.12) 

where a = 0 (Maccarone, 2013). The time series is skewed because the positive spikes are 

not accompanied by negative spikes of equivalent magnitude and therefore the distribution 

of the time series would be positively skewed, with the right tail being larger than the left 

tail. 

 For asymmetric waveforms, a biphase of 90° indicates that the time series is 

linearly rising but rapidly falling as shown in Fig. 4.3, whereas a biphase of -90° indicates 

that the time series rises rapidly and falls linearly. A purely asymmetric time series will 

have a biphase of 90° or -90°, as shown in Fig. 4.3, where the saw-toothed time series 

obtained by setting a = 𝜋
2⁄  in Eq. (4.12) rises more slowly than it falls. In a physical 

setting, asymmetric cycle geometry implies that phase transitions occur at different rates, 

as observed in the QBO time series.    
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Figure 4.2. (a) a skewed time series and (b) its corresponding local biphase. The biphase close to zero 

indicates a nonlinear interaction resulting in a skewed oscillation. The biphase was calculated from the first 

three cosines in the summation described in the text. The large deviations from zero at the edges are the result 

of edge effects.  

 

Figure 4.3. (a) A saw-toothed time series and (b) its corresponding local biphase. The biphase close to 90° 

indicates a nonlinear interaction resulting in an asymmetric waveform. The biphase was calculated from the 

first three cosines in the summation. 

According to Elsayed (2006), the wavelet-based autobicoherence is defined as  

𝑏𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) =   

|𝐵𝑥𝑥𝑥
𝑤 (𝑠1,𝑠2)|2

(∫𝑇|𝑊𝑥(𝑠1,𝑡)𝑊𝑥(𝑠2,𝑡)|2𝑑𝑡)(∫𝑇|𝑊𝑥(𝑠,𝑡)|2𝑑𝑡)
,                              (4.13) 

where  
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𝐵𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) =  ∫

𝑇
𝑊𝑥

∗(𝑠, 𝑡) 𝑊𝑥(𝑠1, 𝑡)𝑊𝑥(𝑠2, 𝑡)𝑑𝑡 ,                               (4.14) 

1

𝑠1
+  

1

𝑠2
=  

1

𝑠
,                                                              (4.15) 

                                                                                                                                

T is a time interval, 𝑊𝑥(𝑠, 𝑡) is the wavelet transform of a time series X at scale s and time 

𝑡, and 𝑊𝑥
∗(𝑠, 𝑡) denotes the complex conjugate of 𝑊𝑥(𝑠, 𝑡). The wavelet-based 

autobicoherence measures the degree of quadratic phase coupling, where a peak at (𝑠1, 𝑠2) 

indicates an nonlinear interaction between the scale components 𝑠1, 𝑠2, and s.  

 In practice, the autobicoherence is computed discretely so that Eq. (4.13) can be 

written as  

𝑊𝑏
̅̅ ̅̅ (𝑠1, 𝑠2) =   

|𝐵𝑥𝑥𝑥
𝑤 (𝑠1,𝑠2)|2

(∑ |𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)|
2𝑛2

𝑛=𝑛1
)(∑ |𝑊𝑛

𝑋(𝑠)|
2𝑛2

𝑛=𝑛1
)
,                               (4.16)  

where  

𝐵𝑥𝑥𝑥
𝑤 (𝑠1, 𝑠2) = ∑ 𝑊𝑛

∗𝑋(𝑠)𝑊𝑛
𝑋(𝑠1)𝑊𝑛

𝑋(𝑠2)

𝑛2

𝑛=𝑛1

 

= ∑ 𝐵𝑛
𝑤

(𝑠1, 𝑠2)𝑛2
𝑛=𝑛1

,                                                     (4.17) 

 

𝑛1 ≥ 1, and 𝑛2 ≤ 𝑁. Note that if 𝑛1 = 1 and 𝑛2 =  𝑁, then Eq. (4.15) represents the global 

autobicoherence spectrum.  

The Monte Carlo approach to pointwise significance testing is adopted in this paper 

and is similar to that used in wavelet coherence (Grinsted et al., 2014). To estimate the 

significance of wavelet-based autobicoherence at each point (𝑠1, 𝑠2), Monte Carlo methods 

are used to (1) generate a large ensemble of red-noise processes with the same lengths and 

lag-1 autocorrelation coefficients as the input time series and (2) compute for each 

randomly generated red-noise process the autobicoherence spectrum. From the ensemble 

of autobicoherence spectra, the p = 100(1 - 𝛼𝑝) percentile of the autobicoherence estimates 

is computed for every point (𝑠1, 𝑠2), where p corresponds to the critical level of the test 
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and 𝛼𝑝 is the pointwise significance of the test. Given the symmetry of the autobicoherence 

spectrum, the critical level of the test can be computed using only half of the 

autobicoherence estimates, reducing computational costs.  

4.3.2 Multiple Testing 

Let 𝛼𝑝 be the significance level of the pointwise significance test as described 

above and let K denote the number of autobicoherence estimates being tested, then there 

will be on average 𝛼𝑝𝐾 false positive results. A similar problem occurs in traditional 

wavelet analysis (Maraun et al., 2007; Schulte et al., 2015). In the case of simultaneously 

testing multiple hypotheses, the number of false positive results can be reduced by 

applying, for example, the Bonoferonni correction (Lehmann, 1986). However, this simple 

correction often results in many true positives being rejected and is especially permissive 

in the case of autocorrelated data (Maraun et al., 2004). Other procedures also exist, 

including the Walker p-value adjustment procedure, which has more statistical power than 

the Bonferonni correction. An even more powerful method is the Benjamini and Hochberg 

(1995) procedure, which controls the false discovery rate (FDR), where the FDR is the 

expected proportion of the false rejections that are actually true. An advantage of this 

method, in addition to its statistical power, is that it takes into account the confidence with 

which local hypotheses are rejected and is robust even in the case of autocorrelated data 

(Wilks, 2002). Benjamini and Yekutieli (2001) developed a modified version of the 

Benjmini and Hochberg (1995) procedure that works for any dependency structure among 

the local test statistics and thus this procedure will be used in this paper to control the FDR.  

The procedure can be described as follows: Suppose that K local hypotheses were 

tested. Let 𝑝(𝑖) denote the smallest of the K local p-values, then, under the assumption that 

the K local tests are independent, the FDR can be controlled at the q-level by rejecting 

those local tests for which 𝑝(𝑖) is no greater than 

𝑝𝐹𝐷𝑅= max
𝑗=1,…,𝑘

[𝑝(𝑗): 𝑝(𝑗) ≤ 𝑞(𝑗 𝐾⁄ )] 

= max
𝑗=1,…,𝑘

[𝑝(𝑗): 𝑝(𝑗) ≤ 𝛼𝑔𝑙𝑜𝑏𝑎𝑙(𝑗 𝐾⁄ )]                                     (4.18) 
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so that the FDR level is equivalent to the global test level. For a local p-value to be deemed 

significant using this procedure, it must be less than or equal to the largest p-value for 

which Eq. (4.18) is satisfied. If no such local p-values exist, then none are deemed 

insignificant, and, therefore, the global test hypothesis cannot be rejected. If the test 

statistics have an unknown dependency structure, q can be replaced with 𝑞/ ∑
1

𝑖

𝐾
𝑖=1 , though 

this substitution makes the procedure less powerful (Reiner et al., 2002). This modified 

method will be applied to autobicoherence spectra at the 0.05 level throughout this paper.  

4.3.3 Wavelet-based Autobicoherence of an Idealized Time Series 

To demonstrate the features of a time series that can be extracted using higher-order 

wavelet analysis, an idealized nonstationary time series will first be considered. Consider 

the quadratically nonlinear time series 

𝑋(𝑡) = cos(2𝜋𝑓𝑡 + 𝜙) + γ(t)cos(4𝜋𝑓𝑡 + 2𝜙) + 𝑤(𝑡),                         (4.19) 

where f is frequency, 𝑤(𝑡) is Gaussian white noise, and γ(𝑡) is a time-dependent nonlinear 

coefficient given by 

𝛾(𝑡) = 0.001𝑡.                                                          (4.20) 

Note that Eqs. (4.3) and (4.4) are satisfied because 𝑓1 +  𝑓2 = 2𝑓1 = 2𝑓2 and similarly for 

𝜙. The sinusoid with frequency 2𝑓1 is said to be the harmonic of the primary frequency 

component with frequency 𝑓2, where the amplitude of the harmonic depends on γ(𝑡), the 

strength of the quadratic nonlinearity. X(t) and the corresponding wavelet power spectrum 

for the case when 𝑓1 =  0.03 is shown in Fig. 4.4. The Gaussian white noise was set to 1 

decibels. The primary frequency component results in a large region of 5% pointwise 

significance at 𝜆 = 30, whereas its harmonic only results in a few small significance 

regions located from t = 700 to t = 1000. It also noted that the appearance of the significance 

power at 𝜆 = 15 from t = 700 to t = 1000 is accompanied by large positive spikes in the 

time series that result in the time series favoring positive values. Prior to the emergence of 

the significant power at 𝜆 = 15, the time series varied smoothly in the sense that negative 

phases were accompanied by positive phases of similar amplitude.  
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Figure 4.4. (a) Time series corresponding to Eq. (4.19). (b) Corresponding wavelet power spectrum.  

Figure. 4.5. (a) Wavelet-based autobicoherence spectrum of the ideal time series. Thick contours enclose 

regions of 5% pointwise significance after controling the FDR. The diagonal line separates the spectrum into 

two symmetric regions. (b) The diagonal slice of the autobicoherence spectrum at 𝑠1 =  𝑠2 = 𝑠. The critical 

level for the test represented by the dotted line was calculated using Monte Carlo methods.  

 

To determine if the oscillations are quadratically interacting, the autobicoherence 

of 𝑋(𝑡) was computed (Fig. 4.5). The significant peak centered at (30, 30) indicates that 
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an oscillation with period 30 is phase-coupled to an oscillation with 𝜆 = 15. The result 

implies that the variability at 𝜆 = 15 is partially due to the interaction between the two 

modes. The fraction of variability is determined by the autobicoherence value 

corresponding to the significant peak. In the present case, 𝑊𝑏
̅̅ ̅̅ (𝑠1, 𝑠2) = 0.5 so about half 

of the variability at 𝜆 = 15 is due to the nonlinear interaction. Note that no other peaks 

were found to be significant.  

4.3.4 Wavelet-based Autobicoherence of Geophysical Time Series 

Shown in Fig. 4.6 is the wavelet-based autobicoherence spectrum for the QBO time 

series. A large region of significance was identified, which contained the local maximum 

at (28, 28) months. The peak represents the phase coupling of the primary frequency 

component with its harmonic with a period of 14 months. The power at 𝜆 = 14 months 

therefore partially resulted from the interaction between its primary frequency component 

and its harmonic. The significance and magnitude of the autobicoherence in the QBO 

spectrum is consistent with how the QBO does not vary smoothly, shifting to the easterly 

phase more quickly than to the westerly phase and with the westerly phase tending to be 

stronger than the easterly phase. The asymmetry in both phase transition and magnitude 

are suggestive of nonlinearities.   

 

Figure. 4.6. The wavelet-based autobicoherence spectrum of the QBO index for the period 1950-2013. Thick 

contours enclose regions of 5% pointwise significance.  

4.3.5 Local Wavelet Autobicoherence 
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It may also be desirable to see how autobicoherence along slices of the full 

autobicoherence spectrum changes with time. To compute local autobicoherence, apply a 

smoothing operator S(W) = 𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒(𝑊𝑛
𝑋(𝑠))) (Grinsted et al., 2004) to each term in 

Eq. (4.13) instead of summing in time, i.e.,  

 𝑏𝑛
𝑤(𝑠1, 𝑠2)  =   

|𝑆(𝑠1
−1𝐵𝑛

𝑤(𝑠1,𝑠2))|
2

𝑆(𝑠1
−1|𝑊𝑛

𝑋(𝑠1)𝑊𝑛
𝑋(𝑠2)|2)∙𝑆(𝑠−1|𝑊𝑛

𝑋(𝑠)|2)
 .                      (4.20) 

The smoothing operator for the Morlet wavelet is given by  

𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 =  (𝑊𝑛
𝑋(𝑠) ∗ 𝑐1

−𝑡2

2𝑠2 ) |𝑠                                           (4.21) 

and 

𝑆𝑠𝑐𝑎𝑙𝑒(𝑊)|𝑛 =  (𝑊𝑛
𝑋(𝑠) ∗ 𝑐2Π(. 6𝑠))|𝑛,                                       (4.22) 

where 𝑐1 and 𝑐2 are normalization constants determined numerically and Π is the 

rectangular function.  

It is important to mention that the numerator of Eq. (4.20) contains a term with 

wavelet coefficients at two different scales so that the choice of smoothing is not as 

straightforward as for wavelet coherence. Smoothing autobicoherence estimates with 

respect to 𝑠𝑚𝑖𝑛 = min (𝑠1, 𝑠2) was found to result in larger autobicoherence estimates, 

whereas smoothing the autobicoherence with respect to 𝑠𝑚𝑎𝑥 = max (𝑠1, 𝑠2) resulted in 

smaller autobicoherence estimates. Given that the autobicoherence estimates are 

influenced by the choice of smoothing, it is inevitable that the significance of the 

autobicoherence estimates is also impacted. In particular, smoothing the autobicoherence 

spectrum with respect to 𝑠𝑚𝑎𝑥 allowed extrema to be smoothed out, eliminating spuriously 

large autobicoherence. For this reason, all local autobicoherence spectra in this paper will 

be computed by smoothing with respect to 𝑠𝑚𝑎𝑥.  

The advantage of using Eq. (4.20) is that transient quadratic nonlinearities can now 

be detected and the need for choosing an integration time interval has been eliminated. If 

𝑠1 = 𝑠2, then (𝑡, 𝑠1, 𝑠1) = (𝑡, 𝑠2, 𝑠2) = (𝑡, 𝑠) and thus, in the case of this diagonal slice, the 

local wavelet-based bicoherence spectrum is a two-dimensional representation of the 
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degree of local quadratic nonlinearity. The vertical axis corresponds to the primary 

frequency and the horizontal axis corresponds to time. As a concrete example, a peak at 

(64, 64) would indicate that at time index 𝑡 = 50 the oscillation with a fundamental period  

𝜆 = 1.03𝑠 ≈ 64 is locally coupled to an oscillation with period 𝜆 ≈ 32.   

One can also compute a local biphase from the smoothed bispectrum by taking the 

four quadrant inverse tangent of the smoothed imaginary part divided by the smoothed real 

part. The local biphase, for example, was computed for the skewed time series shown in 

Fig. 4.2a. As expected, the biphase fluctuates regularly around 0° and the mean is 2°. The 

local biphase for the saw-toothed time series is shown in Fig. 4.3b. The biphase fluctuates 

about 90° and the mean biphase is 90° as expected.  

The procedure for the estimation of the statistical significance of local 

autobicoherence is the following: generate red-noise time series with the same lag-1 

autocorrelation coefficients as the input time series and use the local autobicoherence 

estimates outside the COI to generate a null distribution of 𝑏𝑛
𝑤(𝑠1, 𝑠2). Note that the 

calculation only needs to be performed at a fixed time outside of the COI because red-noise 

is a stationary process, which produces a stationary background spectrum.  

4.3.6 Local Wavelet-based Autobicoherence of an Idealized Time Series 

The local autobicoherence spectrum of 𝑋(𝑡) for (30, 30) is shown in Fig. 4.6b. 

Initially, there is no local autobicoherence that exceeds the 5% significance level. At t = 

250 and t = 500, on the other hand, small regions of 5% significant autobicoherence 

emerge, indicating a transient nonlinear interaction. At t = 500 the nonlinearity is strong 

and results in a large region of significant local autobicoherence extending from t = 500 to 
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the edge of the wavelet domain.

 

Figure 4.7. (a) The local autobicoherence and (b) local biphase corresponding to (30, 30) in the full 

autobicoherence spectrum. Biphases differing from 90° indicate that the nonlinear interaction resulted in a 

waveform with skewness.  

In order to determine if the peaks in autobicoherence are associated with a quadratic 

nonlinearity, it is important to compute the biphase, which is shown in Fig. 4.7b.  From t 

= 0 to t = 400 there is an unstable phase relationships between the phase of the primary 

frequency component and its harmonic. Such a lack of phase coherence indicates a weak 

nonlinear interaction, which is consistent with how the autobicoherence is lower before t = 

400. In contrast, after t = 400, the biphase becomes stable, changing little with time, 

indicating a consistent phase relationship between the primary frequency mode and its 

harmonic. It also noted that the biphase during this time fluctuates near 0°, which implies 

that the phase relationships arise from a quadratic nonlinearity. The near zero biphase is 

consistent with how X(t) was constructed from the sum of two cosines with zero phase and 

also suggests that the interaction results in skewed cycle geometry, where positive values 

of the time series are preferred. Indeed, by inspection of Fig. 4.4a the oscillations initially 

appear to be sinusoidal, varying smoothly, whereas after t = 400 spikes begin to appear and 

𝑋(𝑡) favors positive values.  

4.3.7 Local Wavelet-based Autobicoherence of the QBO Time Series 
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The local autobicoherence spectrum of the QBO index at the point (28, 28) in the 

full autobicoherence spectrum is shown in Fig. 4.8. From 1950 to 1970 the magnitude of 

the autobicoherence fluctuated and consisted of one local significant peak at 1965. 

Significant autobicoherence was also found from 1975 to 1998, contrasting with the 

autobicoherence after 1998, which was not found to be significant until 2010.  

 

Figure. 4.8. Same as Fig. 4.7 except at (28, 28) in the autobicoherence spectrum of the QBO index Biphases 

differing from 90° indicate that the nonlinear interaction resulted in a waveform with skewness. 

To determine if the peaks indicated in the autobicoherence are associated with a 

quadratic nonlinearity, the local biphase was computed. Fig. 4.8a shows the local biphase 

for the autobicoherence peak at (28, 28). For most of the study period, the biphase was 

found to vary considerably, particularly during the 1950-1970 and 1995-2013 periods. On 

the other hand, the biphase varied smoothly from 1970 to 1995, consistent with how the 

autobicoherence during that period was large and stable (Fig. 4.8a). Also, during that period 

the biphase was nonzero; in fact, the mean biphase during the period was -100°, suggesting 

that the phase coupling is not the result of a quadratic interaction. A biphase of -100° 

indicated asymmetric geometry, which physically represents how phase transitions of the 

QBO occurred at different rates. Recall that it has already been discussed in the 

introduction that the QBO transitions from easterly phases to westerly phases more rapidly 

than from westerly to easterly phases (Lu et al., 2009). Another interesting feature is the 

general increase in the biphase from 1970 to 1995. In the beginning of the time period, the 

biphase was -180° and after 1980 the biphase switched to -90°.   
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The local autobicoherence and biphase corresponding to the peak (16, 26) was also 

computed (Fig. 4.9). The mean of the absolute value of the biphase for the period 1950-

2013 was 130°, indicating that the interaction among the modes with periods 10, 16, 26 

resulted in skewed waveforms. In fact, because the biphases were close to 180° the 

waveforms should have been skewed to negative values (Maccarone, 2013) and such 

skewness is evident by inspecting Fig. 4.1. Also note that some of the largest negative 

phases of the QBO occurred from 1995 to 2010, which coincided with the period of most 

significant autobicoherence as shown in Fig. 4.9a.  

 

Figure. 4.9. Same as Fig. 4.8 except at the point (16, 26).   

4.4. Block Bootstrapping Methods 

4.4.1 Block Bootstrapping Autobicoherence 

Bootstrapping is a widely used technique to estimate the variance or uncertainty of 

a sample estimate. For independent data one samples with replacement individual data 

points (Efron, 1979); for dependent data one must sample with replacement blocks of data 

to preserve the autocorrelation structure of the data (Kunsch, 1989). The latter technique is 

called block bootstrapping and should be used for variance estimation of global wavelet 

quantities, as wavelet coefficients are known to be autocorrelated in both time and scale. 

The use of traditional bootstrapping techniques would result in confidence intervals that 

are too narrow. It is expected, however, that the choice of the bootstrapping technique is 
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more critical at larger scales, as the decorrelation length of the mother wavelet increases 

with scale.     

A brief overview of the procedure is provided below but a more detailed discussion 

can be found in Schulte et al. (2015). To find the approximate 100(1 − 𝛽)% confidence 

interval of an autobicoherence estimate, divide the set of wavelet coefficients at each scale 

into over-lapping blocks. The lengths of the blocks at each scale should be the same and 

the randomly resampled blocks chosen should be the same at each scale to avoid 

randomizing the data. The concentration of the blocks then results in a synthetic set of 

wavelet coefficients at each scale. The synthetic set of wavelet coefficients can then be 

used to calculate a bootstrap replicate of the autobicoherence. The iteration of the 

procedure 1000 times results in a distribution of bootstrap replicates from which a 95% 

confidence interval can be obtained.  

As noted by Schulte et al. (2015), the appropriate block length to use can be 

determined by Monte Carlo methods. Using Monte Carlo methods, it was determined that 

a block length of 𝑁0.6 was found to produce accurate confidence bounds while also 

producing the widest confidence intervals at all scales.  

4.4.2 Application to Ideal and Climatic Time Series 

Figure 4.5b shows the application of the block bootstrap procedure to the diagonal 

slice 𝑠1 =  𝑠2 = 𝑠 of the autobicoherence for the ideal case. The 95% confidence intervals 

were also obtained using the ordinary bootstrap. A pronounced peak at 𝑠 =  30 was 

identified and represents the interaction between the primary frequency and its harmonic. 

By inspection of Fig. 4.5b, there is a clear difference between the widths of the confidence 

intervals obtained from the two bootstrapping procedures. For the ordinary bootstrap, the 

confidence intervals are narrow and the width of the confidence intervals appear to be only 

weakly dependent on scale. On the other hand, the confidence intervals obtained using the 

block bootstrap procedure are wide, especially at large scales, and the width of the 

confidence intervals depends strongly on scale, increasing from small scales to large scales. 

It is also noted that, whereas the block bootstrap procedure has deemed no spurious peaks 

as significant, the ordinary bootstrap procedure deemed two the spurious peaks at s = 14 

and s = 100 as significant. The implementation of the block bootstrap procedure can 
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therefore enhance confidence in results, facilitating the investigation of a deeper physical 

understanding.   

 

Figure. 4.10. Same as Fig. 4.5b except for the QBO index for the period 1950-2013. 

The application of the block bootstrap procedure to the diagonal slice 𝑠1 =  𝑠2 = 𝑠 

of the full autobicoherence spectrum of the QBO index is shown in Fig 4.10. The 95% 

confidence intervals corresponding to the peaks (14, 14) and (28, 28) do not cross the 5% 

significance bound and thus one has more confidence that those peaks are significant. All 

other peaks have been deemed insignificant.  

4.5. Summary 

 Higher-order wavelet analysis together with significance testing procedures were 

used to detect nonlinearities embedded in an ideal time series and the QBO time series. 

The autobicoherence spectrum of the QBO index revealed phase coupling of the 28 month 

mode with a higher frequency mode with period 14 months. A local autobicoherence 

spectrum of the QBO index showed that the strength of the nonlinearities varied 

temporally. Furthermore, the local biphase spectrum indicated that the nonlinear 

interaction resulted in waveforms that were both skewed and asymmetric, indicating that 

the strength of negative QBO events were stronger than positive events, and that transitions 

between events occurred at different rates.   
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Chapter 5 

The influence of Climate Modes on Streamflow in the 

Mid-Atlantic Region of the United States 

 

5.1. Introduction 

The Susquehanna, Delaware, and Hudson River Basins (SRB, DRB, and HRB) 

drain to three important estuaries of the Mid-Atlantic region of the United States (US, 

Figure 5.1), which have experienced substantial climate change and are likely to continue 

do so with increases in greenhouse gas concentrations (Najjar et al., 2009). This projected 

climate change is likely to render more difficult efforts to restore these estuaries, which 

have been stressed by anthropogenic activities, including pollution (e.g., toxic metals, 

polychlorinated biphenyls, and excess nitrogen), dredging, conversion of wetland habitats, 

and overfishing (Najjar et al., 2010; Kreeger et al., 2010; Steinberg et al., 2004). 

 Climate change is likely to manifest itself through changes in existing climate 

modes, which are recurring and often oscillatory patterns of climate variables, such as sea 

level pressure (SLP) and sea surface temperature (SST), that operate on timescales ranging 

from weekly to multi-decadal. For example, Ning et al. (2012) found increases in projected 

wintertime precipitation in the Northeast US to be consistent with a projected decrease in 

the positive phase of one prominent climate mode, the North Atlantic Oscillation (NAO). 

The NAO and other important climate modes, such as the Atlantic Multi-decadal 

Oscillation (AMO), the Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation 

(ENSO), the Pacific Northern-American Teleconnection (PNA), and the North Pacific 

Oscillation (NPO), have regional- to global-scale impacts on climate and weather 

(Philander, 1983; Trenberth and Hurrell, 1994; Mantua et al., 1997; Thompson and 

Wallace, 1998; Hurrell et al., 2003).  
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An understanding of the historical impacts of climate modes on regional climate 

variability can enhance our understanding of future changes in that region. Furthermore, 

an understanding of climate-mode impacts on regional meteorological, hydrological, and 

ecological characteristics will improve monthly and seasonal forecasts, which are of 

economic importance. With that in mind, the goal of this study is to analyze the variability 

in streamflow of the Susquehanna, Delaware, and Hudson Rivers, three large rivers in the 

Mid-Atlantic region of the US, in the context of climate modes. 

 There are relatively few studies on the impacts of climate modes on streamflow 

variability in the Mid-Atlantic region as compared to precipitation-climate mode and 

temperature-climate mode studies. Dettinger and Diaz (2000) found associations between 

the Dec-Feb Southern Oscillation (SO) and Oct-Sept streamflow across the Northeast, 

where El Nino years are associated with wetter-than-normal conditions. Futhuremore, Xu 

et al. (2012) identified relationships between North Pacific SSTs and Northeast US 

streamflow and Barlow et al. (2001) found North Pacific SSTs to have been possible 

drivers of the 1960s drought, a major hydrometeorological event that strained water-

management agreements between New York City and Philadelphia (USDA, 2000). The 

relationships may be the result of prevailing synoptic regimes that set up during certain 

NAO and ENSO phases (Miller et al., 2006). Barlow et al. (2001) and Miller et al. (2006), 

however, only considered climate mode-streamflow simultaneous relationships. It is not 

clear if relationships hold on longer timescales. Labat (2008) and Whitney (2010) 

investigated streamflow variability across the Mid-Atlantic Bight and found multi-decadal 

variability in the flows of many rivers in the region, which Whitney (2010) hypothesized 

was related to the NAO.   

  The streamflow-climate mode relationships discussed above are associated with 

changes in precipitation, temperature, snow cover, and evapotranspiration, all of which 

have been investigated in the context of climate modes. Leathers et al. (1991) found that 

positive PNA phases are accompanied by colder and drier conditions across the US on 

monthly timescales. Serreze et al. (1998) noted increased snowfall in the Mid-Atlantic 

region during positive phases of the PNA, which was found to be associated with below-

normal maximum temperature on precipitation days. Barlow et al. (2001) noted ENSO, 
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NPO, and PDO influences on Northeast US precipitation and drought conditions. Pattern 

et al. (2003) found associations between ENSO and winter snowfall across the Northeast 

US, with El Niño years being accompanied by more frequent major snow events. 

Archambault et al. (2007) found cool seasons under positive NAO and negative PNA 

regimes to be wettest. Eichler and Higgins (2005) found increased spring precipitation 

during El Niño years as a result of more frequent East Coast storms. Similarly, Seager et 

al. (2010) found strong winter snowfall-NAO and snowfall-ENSO linkages, both of which 

were related to the frequency of East Coast storms. Despite the impact of ENSO on 

Northeast precipitation, previous research did not relate ENSO to the 1960s drought in the 

Northeast US; in fact, it has been argued that the drought (and the subsequent wet period 

that continues to the present) resulted from internal atmospheric variability because global 

climate models with prescribed SSTs did not reproduce the drought (Seager et al., 2012).  

This paper presents a comprehensive investigation into climate-mode impacts on 

Mid-Atlantic streamflow by considering all timescales ranging from months to decades. 

To understand the proximate forcing of Mid-Atlantic streamflow, data sets on mean 

watershed temperature and precipitation are analyzed as well. Relationships among 

streamflow, precipitation, temperature, and climate indices are investigated first through a 

standard linear correlation analysis at monthly, seasonal, and annual timescales. A more 

general understanding of the variability of Mid-Atlantic streamflow and its linkages to the 

proximate climate and climate modes is obtained via wavelet analysis and wavelet 

coherence analysis. 

The main advantage of wavelet analysis is that it can decompose a complex time 

series, such as streamflow, into a two-dimensional (time and frequency) representation, 

from which inferences about the time series can be drawn. Wavelet analysis can, in 

particular, detect important features embedded in the time series, such as modes of 

dominant variability and their temporal behavior, which may be linked to some physical 

mechanisms, facilitating further scientific investigation. The previously noted studies by 

Labat (2008) and Whitney (2010) detected decadal streamflow variability but did not 

quantitatively link it to physical mechanisms, underscoring the need to evaluate the 

relationship between multi-decadal streamflow variability and large-scale climate indices.   
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The relationship between streamflow and a climate index at a variety of timescales 

can be quantified using wavelet coherence analysis, which has the advantage of minimizing 

aliasing while also eliminating the choice of averaging window or filter. Climate modes 

are typically most energetic at certain periods so that climate mode-streamflow 

relationships may be used to identify particular timescales. The PDO, as an example, is 

most energetic at periods of 15-25 years and 50-70 years and therefore one might expect 

its influence to be strongest at those timescales (Mantua, 2010).  

Another advantage of wavelet coherence analysis is that phase relationships at a 

given timescale can be quantified as a function of time. The goal of a traditional cross-

correlation analysis is to determine the time delay for which the association between two 

time series is greatest, but one cannot determine how the relationship changes over time. 

In a wavelet coherence analysis, on the other hand, phase relationships are calculated such 

that the degree to which two time series are positively or negatively related can be 

measured as both a function of time and period. Such a decomposition is important in this 

study because the temporal variations of ENSO teleconnections result from differences in 

the atmospheric basic state during ENSO events and are modulated by other teleconnection 

patterns (Gershunov and Barnett, 1998). 

The remainder of the paper is organized as follows. Section 5.2 describes the data 

sets used (streamflow, temperature, precipitation, and climate indices) and the methods 

employed (correlation and wavelet analysis). Section 5.3 first provides a brief description 

of Mid-Atlantic streamflow and precipitation variability, and then presents the main 

results: the outcomes of the linear correlation and wavelet analyses. Section 5.3 also 

presents an analysis of climate-mode contributions to decadal-scale Mid-Atlantic 

streamflow anomalies. Section 5.4 provides a brief discussion of the possible 

teleconnection patterns that link climate modes to Mid-Atlantic hydrology and Section 5.5 

summarizes the analysis with some concluding remarks.  

5.2. Data and Methods 

5.2.1 Streamflow, Temperature, and Precipitation 
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Mean monthly streamflow data were obtained from the United States Geological 

Survey (USGS) for the Delaware, Hudson, and Susquehanna Rivers at the Trenton, 

Waterford, and Harrisburg gauging stations, respectively (Figures 5.1a and 5.1b), which 

have corresponding USGS station numbers of 01463500, 01335754, and 01570500. These 

gauging stations were chosen because of their relatively large drainage areas and long 

records. The period of record used in this study is 1900-2010 for the Susquehanna and 

Hudson Rivers, and 1913-2010 for the Delaware River. These records are complete except 

for Waterford, which has a few missing months in 1976 (0.9% of the record). These gaps 

were filled by linearly regressing streamflow from the nearby Green Island gauging station 

(USGS station number 01358000) with Waterford streamflow from 1950-2010 (Pearson 

correlation coefficient equals 0.99). All streamflow data were converted to anomalies by 

subtracting the climatological mean monthly value for each month from the monthly 

values, thereby removing the annual cycle.  

Figure 5.1. (a) Location of the US climate divisions delimited with thin black lines. State boundaries are thick 

black lines and the study region is indicated by the gray box. (b) Location of Harrisburg, Trenton, and 

Waterford gauging stations with corresponding rivers and Historical Climate Network stations. Thick black 

lines represent the boundaries of the Harrisburg, Trenton, and Waterford drainage basins and thin lines 

represent state boundaries. 

Mean monthly maximum temperature and mean monthly precipitation data for 

1900-2010 were obtained from the Historical Climate Network (HCN; Menne et al., 2009); 

station locations are shown in Figure 5.1. The reason for using maximum temperature data 
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is that precipitation type in the Northeast US is impacted by mean maximum temperature 

on precipitation days (Serreze et al., 1998). Compared to other precipitation and 

temperature data sets, the HCN data are of relatively high quality and long record length, 

which facilitates analysis on long timescales. To emphasize the basin-wide impacts of 

climate modes, the station-based precipitation and temperature data were averaged without 

any weighting to obtain a time series for each of the three river basins upstream of the 

gauging station. Like streamflow, the precipitation and temperature time series were 

converted to anomalies.  

A few stations used in the averaging are located just outside the drainage basins. 

These stations were included in order to improve the significance of the basin-wide 

averages. Although precipitation at these stations will not directly contribute to streamflow 

at the gauging station in question, the distances between the boundaries of the drainage 

basins and the stations are small so it is expected that even mesoscale convective 

precipitation events contributed to precipitation at the drainage basin boundaries and the 

stations similarly.  

Monthly climate divisional data were also used to understand spatial variability in 

climate-mode precipitation relationships (Figure 5.1a). The data, extending back to 1895, 

are available for 344 climate divisions, regions within states that have a uniform 

climatology, eight to ten for each state (Guttman and Quayle, 1998). In the present study, 

only the precipitation data for the period 1900-2010 were used and converted to anomalies 

like the previously mentioned data sets. The benefit of using the divisional data versus the 

station-based HCN data is that local climatological effects can be smoothed out, allowing 

better detection of climate signals.  

5.2.2 Climate Indices 

For this study, eight climate indices were selected (Table 5.1) based on studies that 

have identified physical relationships between climate modes and precipitation and 

streamflow in the Mid-Atlantic region (see Introduction). We first briefly describe the 

indices before discussing the sources of the data. 
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Perhaps the most well-known climate mode is ENSO, whose evolution and strength 

can be monitored using two metrics, the Southern Oscillation Index (SOI) and the Niño 3.4 

index (Trenberth, 1984; 1997), which capture the atmospheric and oceanic components, 

respectively, of ENSO. The SOI is calculated as the difference of SLP anomalies between 

Tahiti and Darwin, Australia. The Niño 3.4 index is defined as the average SST in the 

region 5°N-5°S, 170°W-150°W.  

The climate modes most closely linked to the North Pacific region are the NPO, 

PDO, and PNA. The North Pacific Index, which describes the NPO, is defined as the area-

weighted SLP over the region 30°N-65°N, 160°E-140°W (Trenberth and Hurrell, 1994). 

The PDO index is constructed from the leading mode of an un-rotated Empirical 

Orthogonal Function (EOF) analysis of monthly residual SST anomalies in the North 

Pacific poleward of 20°N, where the monthly residual is the difference between the 

observed anomaly and the global-mean SST anomaly (Mantua et al., 1997; Mantua and 

Hare, 2002). The PNA index is constructed from a rotated EOF analysis of daily 500-hPa 

height anomalies in the region bounded by 20°N and 90°N in the Northern Hemisphere 

(Barnston and Livezey, 1987).    

Table 5.1. Climate indices, data sources, record lengths, and relevant publications. 

Climate index Source 
Record length 

used References 

NAO NCAR 1900 - 2010 Hurrell (1995) 

AO CPC 1950 - 2010 Thomas and Wallace (1998) 

AMO CPC 1900 - 2010 Enfield et al. (2001), Trenberth and Shea (2006) 

Nino 3.4 NCAR 1900 - 2010 Trenberth (1997) 

SO NCAR 1900 - 2010 Trenberth (1984) 

NPO NCAR 1900 - 2010 Trenberth and Hurrell (1994) 

PNA CPC 1950 - 2010 Wallace and Gutzler (1981) 

PDO UW 1900 - 2010 Mantua et al. (1997), Mantua and Hare (2002) 

Metrics of climate variability related to the North Atlantic Ocean are the AMO and 

NAO indices. The Atlantic basin exhibits SST variability with a preferred multi-decadal 

timescale. This multi-decadal oscillation of SST has been termed the AMO (Kerr, 2000), 
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whose index is defined as the detrended average SST in the North Atlantic basin from 0° 

to 70°N (Enfield et al., 2001; Trenberth and Shea, 2006). The NAO consists of a dipole 

SLP pattern established by the Azores High and the Icelandic Low and the NAO index is 

defined as the normalized SLP difference between these pressure centers (Hurrell, 1995). 

A climate mode related to the NAO is the AO, an oscillation of the polar vortex. The AO 

index is constructed by standardizing the first principle component time series of northern-

hemisphere SLP for all months of the year (Thomas and Wallace, 1998). 

Climate index data used in the analysis (Table 5.1) were obtained from the Climate 

Prediction Center (CPC), the National Center for Atmospheric Research (NCAR, 

http://www.cgd.ucar.edu/cas/catalog/climind/), and the University of Washington (UW, 

http://jisao.washington.edu/pdo/PDO.latest). All data are monthly averages and, when 

necessary, were converted to anomalies by removing the mean annual cycle. All of the 

indices were available for the period 1900-2010, except those for the AO and PNA, which 

were available for the period 1950-2010. For consistency, the correlation analysis was 

applied to all eight indices for the period 1950-2010. The wavelet analysis was applied to 

all indices, except those for the AO and PNA, for the period 1900-2010.  

5.2.3 Correlation Analysis 

Linear Pearson correlation coefficients between streamflow and climate indices, 

between precipitation and climate indices, and between temperature and climate indices 

were computed using monthly, seasonal, and annual averages for the period 1950-2010. 

Means were identified as DJF (December, January, February) for winter, MAM (March, 

April, May) for spring, JJA (June, July, August) for summer, and SON (September, 

October, November) for fall. The calendar year was used for the annual means. Seasonal 

averages were computed because many climate modes are preferentially expressed in 

certain seasons. For example, it is in the Northern Hemisphere winter that the NAO and 

the AO often reach their maximum amplitudes and have the strongest influence. 

Significance was tested using the non-parametric bootstrap method (Efron, 1979) as 

follows: the data were resampled 10,000 times, correlation coefficients from the resampled 

data were computed, and then 95% and 99% confidence intervals of the resulting 

http://jisao.washington.edu/pdo/PDO.latest
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distribution of synthetic correlation coefficients were computed. Correlation coefficients 

were rejected at the 5% significance level if the confidence interval contained a correlation 

coefficient of zero.  

Correlation analysis was also used to quantify the impact of precipitation and 

temperature on streamflow. Linear Pearson correlation coefficients were computed for 

each calendar month between streamflow and precipitation for 1950-2010. Temperature 

can influence streamflow variability through evapotranspiration, snowfall, and snowmelt. 

In fact, in the New England region, the significant storage of water in snow results in 

temperature explaining up to 30% of streamflow variability (Bradbury et al., 2002). In the 

SRB, Najjar (1999) found that annual precipitation minus streamflow (a proxy for annual 

evapotranspiration) was positively correlated with temperature. Nevertheless, precipitation 

dominates the streamflow signal so that temperature-streamflow relationships may appear 

to be non-existent or weak. Therefore, the partial correlation coefficient (Mattson, 1981) 

between temperature (t) and streamflow (q), controlling for precipitation (p), was computed 

for each calendar month for 1950-2010, which allows temperature impacts on streamflow 

to be assessed with the precipitation-streamflow dependence removed: 

𝑟𝑡𝑞.𝑝 =  
𝑟𝑡𝑞− 𝑟𝑡𝑝⋅𝑟𝑞𝑝

√(1−𝑟𝑡𝑝
2 )(1−𝑟𝑞𝑝

2 )
,                                                      (5.1) 

where 𝑟𝑥𝑦 represents the simple correlation coefficient between x and y. The partial 

correlation coefficient can be equal to the simple correlation coefficient or it can be very 

different depending on how strong the influence of the third variable is on the relationship 

between the other two variables. The statistical significance of the correlation coefficients 

among temperature, precipitation, and streamflow was computed using the bootstrap 

method (Efron, 1979) in the same way as for the Pearson correlation coefficient.  

5.2.4 Wavelet Analysis 

Local and global wavelet power spectra were computed for streamflow, 

precipitation, and temperature. In this study we adopt the Morlet wavelet, which is given 

by 
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𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔𝜂𝑒−

1
2

𝜂2

, 
(5.2) 

where 𝜔 is the dimensionless frequency and η is the dimensionless time. Providing a 

balance between time and frequency localization, the Morlet wavelet with ω = 6 is 

recommended for identifying features of geophysical time series (Grinsted et al., 2004). To 

find the local wavelet power spectrum of a time series (𝑥𝑛; n = 1, ... , N), such as streamflow 

or precipitation, one must take the wavelet transform of the time series, which is defined 

as   

𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)]

𝛿𝑡

𝑠

𝑁
𝑛′=1 ],                                       (5.3) 

where 𝛿𝑡 is a uniform timestep (one month in this case), s is the scale of the Morlet 

wavelet, and 𝜂 = 𝑠 ⋅ 𝑡. The more traditional Fourier period 𝜆 is approximately related to 

the wavelet scale by 𝜆 = 1.03𝑠. The wavelet power at a given scale and time is then given 

by |𝑊𝑛
𝑋(𝑠)|. Averaging 𝑊𝑛

𝑋(𝑠) over the time index results in the global wavelet power 

spectrum. The significance of both global and local wavelet power at a given frequency 

and time can be tested against a red-noise background. The original time series can be 

reconstructed by taking the inverse wavelet transform of the wavelet coefficients (Torrence 

and Compo, 1998). In particular, to reconstruct the signal at a particular frequency, all 

wavelet coefficients are set to zero except for those corresponding to the frequency 

components of interest. Taking the inverse wavelet transform of the modified wavelet 

coefficients will produce the signal at the desired frequency or period with all other 

frequency components removed. The reader is referred to Torrence and Compo (1998) and 

Grinsted et al. (2004) for a more detailed discussion of the theory of wavelet analysis and 

significance testing used in this paper.  

To quantify the relationships between climate modes and Mid-Atlantic streamflow, 

precipitation, and temperature as a function of frequency and time, a wavelet coherence 

analysis was conducted. Following Grinsted et al. (2004), the wavelet coherence between 

two time series X and Y is given by 
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𝑅𝑛

2(𝑠) =
|𝑆(𝑠−1𝑊𝑛

𝑋𝑌(𝑠)|
2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)∙𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
 , 

(5.4) 

 

where 𝑊𝑛
𝑋𝑌(𝑠) is the cross-wavelet transform, defined as the product of the wavelet 

transform of X and the complex conjugate of the wavelet transform of Y, and S is a 

smoothing operator defined by S(𝑊𝑛(𝑠)) = 𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒(𝑊𝑛(𝑠))) .  𝑆𝑡𝑖𝑚𝑒 represents 

smoothing in time and 𝑆𝑠𝑐𝑎𝑙𝑒 is smoothing along the wavelet scale axis. Eq. (5.4) resembles 

the definition of the correlation coefficient and, in fact, can be regarded as such. That is, a 

coherence value of 0 signifies that the two time series are unrelated, whereas a coherence 

value of 1 indicates the two time series are linearly related at the given frequency and time. 

Using Monte Carlo methods, the statistical significance of wavelet coherence was found 

by generating a large number of synthetic data pairs with the same lag-1 autocorrelation 

coefficients as the input time series, calculating the wavelet coherence for each pair, and 

then estimating the significance level at each scale using values outside the cone of 

influence (Grinsted et al., 2004). A more detailed discussion of wavelet coherence can be 

found in Grinsted et al. (2004). 

Characteristic timescales reported in this study were identified using global wavelet 

power spectra, the time-averaged representations of the sample wavelet power spectra. 

Periods of maximum time-averaged power were considered the dominant timescale of 

variability. For time-averaged wavelet coherence, however, an alternative definition was 

used, which is given by 

𝐺𝐶(𝑠) =  
|𝑊𝑋𝑌(𝑠)|

2

(∑ |𝑊𝑛
𝑋|

2𝑁
𝑛=1 )(∑ |𝑊𝑛

𝑌|
2𝑁

𝑛=1 )
,                                             (5.5) 

where   

𝑊𝑛
𝑋𝑌(𝑠) =  ∑ 𝑊𝑛

𝑋(𝑠)𝑊𝑛
𝑌∗(𝑠)𝑁

𝑛=1 ,                                              (5.6) 

with the asterisk denoting the complex conjugate (Elsayed, 2006). Eq. (5.5) measures the 

coherence between two time series in the entire study period at a scale s. Statistical 
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significance of 𝐺𝐶(𝑠) was computed using Monte Carlo methods as follows: red-noise time 

series with the same lengths and autocorrelation coefficients as the two input data series 

were generated and 𝐺𝐶(𝑠) was computed for each pair of red-noise time series. The 

resulting distribution of 𝐺𝐶(𝑠) at each scale was then used to estimate the significance of 

the global coherence estimates.                            

To quantify the impacts of climate modes on streamflow and precipitation 

variability, the quantity  

𝐹𝑛
𝑋(𝑠) =  𝑅𝑛

2(𝑠)𝑊𝑛
𝑋(𝑠),                                                  (5.7) 

representing the fraction of the power of X at n and s related to Y, was computed. In the 

present case, Y is a climate mode, the input into the system, and X is streamflow or 

precipitation, the linear response to Y. Before the above quantity was calculated, wavelet 

coherence values that were not statistically significant at the 5% level were set to zero, the 

idea being that insignificant wavelet coherence means that the null hypothesis cannot be 

rejected and the two time series at a given time and scale are considered independent (i.e., 

 𝑅𝑛
2(𝑠) = 0). To obtain physical estimates of climate-mode impacts on streamflow and 

precipitation, the inverse transform of 𝐹𝑛
𝑋(𝑠) was computed. If 𝑋𝑚𝑜𝑑𝑒 denotes the inverse 

transform of 𝐹𝑛
𝑋(𝑠) for all time indices and scales, then X can be decomposed as  

𝑋 =  𝑋𝑚𝑜𝑑𝑒 + 𝑋𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙,                                                      (5.8) 

where  𝑋𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the component of 𝑋 unrelated to the climate mode. If 𝑋 = 𝑋𝑚𝑜𝑑𝑒  , for 

example, then all of the time-series variability is due to forcing from the climate mode. It 

is noted that 𝑋𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 may not be purely noise, which would be the case if two independent 

climate modes were driving streamflow or precipitation.  

5.3. Results 

5.3.1 Observed Variability of Mid-Atlantic Streamflow, Precipitation, and 

Temperature 
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The observed annually averaged Susquehanna, Delaware, and Hudson River 

streamflow anomalies are shown in Figures 5.2a, c, and e, respectively. The variability in 

the time series from 1900 to 1940 was characterized by high-frequency oscillations, 

whereas low-frequency variability as well as high-frequency variability occurred during 

1940-1980. The low-frequency variability is evident by examining the five-year running 

mean of the time series (shown in black), which highlights the decadal variability of 

streamflow during the period 1950-1980. The 1960s drought and the pluvials (very wet 

periods) of the 1970s and 2000s are evident in all three basins. The 1960s drought was 

deepest in the DRB whereas the pluvials appear to have been greatest in the HRB. The 

mean annual cycles of streamflow and precipitation in the three basins are shown in Figures 

2b, d, and f. The streamflow annual cycles are characterized by large maxima in spring, 

minima in summer, and a secondary maximum in late fall, extrema that are caused by the 

annual cycle in evapotranspiration and snowmelt—not precipitation, which has a weak 

annual cycle (e.g., Najjar, 1999). Unlike Susquehanna and Delaware River streamflow, 

Hudson River streamflow exceeded precipitation during March, possibly due to snowmelt 

during that month. 

 

Figure 5.2. Observed annually averaged (a) Susquehanna, (c) Delaware, (e) Hudson River streamflow 

anomalies and 5-year running mean of the observed time series for 1900-2010. Mean annual cycles of (b) 

Susquehanna River streamflow and SRB precipitation, (d) Delaware River streamflow and DRB 

precipitation, and (f) Hudson River streamflow and HRB precipitation for 1900-2010. 
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5.3.2 Streamflow/precipitation-climate mode Correlation Analysis 

Panels a and b of Tables 5.2, 5.3, and 5.4 show the linear correlation analysis of 

streamflow-climate index and precipitation-climate index for the Susquehanna, Delaware, 

and Hudson Rivers, respectively. The Niño 3.4 index was found to be weakly correlated 

with Delaware River streamflow and DRB precipitation in April, accounting for 

approximately 16% of the variance of precipitation. A similar relationship was found for 

SRB precipitation and no relationships were identified for the HRB. A possible explanation 

for the increased April streamflow during positive Niño 3.4 phases is the increased 

January-March US East Coast storm frequency and subsequent increase in precipitation 

(Eichler and Higgins, 2005). The significant correlation coefficients with the SO and Niño 

3.4 indices were generally similar and of opposite sign. There are a few notable exceptions: 

for example, November Susquehanna streamflow and HRB precipitation were not 

correlated with the Niño 3.4 index but were correlated with the SO index. Differences may 

be the result of how SSTs lag changes in the atmosphere.  

Numerous statistically significant PNA-precipitation and PNA-streamflow 

relationships were found, consistent with the fact that the PNA tends to be in a positive 

phase during positive Niño 3.4 events (Feldstein, 2000). The April PNA index was found 

to be significantly and positively correlated with April precipitation for the DRB and SRB, 

though the PNA index was only significantly correlated with Delaware River streamflow. 

The streamflow-PNA and precipitation-PNA relationships may be the result of a 

southeastward-shifted trough that provides more favorable conditions for coastal storm 

development (Leathers, 1991). The PNA and the related NPO also had seasonal influences: 

the PNA and NPO indices were significantly correlated with Delaware River streamflow 

and precipitation at the 1% level in spring and were also found to be significantly correlated 

with Susquehanna and Hudson River streamflow in fall.  
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Table 5.2. Linear Pearson correlation coefficients between climate indices and (a) Susquehanna River 

streamflow, (b) SRB precipitation,  and (c) SRB temperature for 1950-2010. Only correlation coefficients 

significant at the 5% level are displayed, with correlation coefficients significant at the 1% level shaded in 

gray.  

 

Table 5.3. Same as Table 5.2 but for the DRB.  

 

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO NAO

AO 0.34 AO

AMO -0.26 0.26 AMO -0.26

Nino 3.4 -0.30 Nino 3.4

SO 0.27 -0.30 SO

NPO 0.26 0.26 0.41 NPO 0.35

PNA -0.34 PNA -0.30 -0.26

PDO PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO NAO

AO AO

AMO -0.26 0.49 -0.30 AMO

Nino 3.4 0.38 Nino 3.4

SO -0.30 -0.30 SO

NPO NPO

PNA 0.27 PNA

PDO 0.33 PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.38 0.43 0.34 0.33 0.31 0.50 NAO 0.49

AO 0.42 0.37 0.32 0.28 0.35 0.36 0.58 AO 0.53

AMO AMO 0.28

Nino 3.4 -0.28 Nino 3.4 -0.25

SO SO

NPO 0.29 0.32 0.33 NPO

PNA -0.30 -0.26 0.34 -0.29 PNA

PDO -0.30 -0.38 -0.39 PDO -0.43

(c) Temperature 

(a) Streamflow

(b) Precipitation

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO -0.32 NAO

AO 0.34 AO

AMO -0.30 0.44 AMO 0.31

Nino 3.4 -0.28 0.27 Nino 3.4

SO 0.30 SO

NPO -0.34 0.25 0.28 NPO -0.37 0.36

PNA 0.39 PNA 0.36

PDO 0.27 -0.25 PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.25 NAO

AO AO

AMO -0.31 0.45 AMO 0.26

Nino 3.4 0.37 Nino 3.4

SO -0.26 0.33 SO

NPO -0.29 NPO -0.31 0.30

PNA 0.38 PNA 0.34

PDO 0.29 PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.37 0.41 0.32 0.30 0.28 0.53 NAO 0.50

AO 0.41 0.36 0.31 0.39 0.36 0.56 AO 0.53 0.28

AMO 0.30 AMO 0.30

Nino 3.4 -0.26 Nino 3.4

SO SO

NPO 0.25 0.33 0.27 NPO

PNA -0.25 0.30 -0.31 PNA

PDO -0.24 -0.39 -0.36 PDO -0.42

(a) Streamflow

(b) Precipitation 

(c) Temperature
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Table 5.4. Same as Table 5.3 but for the HRB.  

 

It is noted that the NP, PDO, and PNA indices were not found to be correlated with summer 

streamflow for all three rivers, though Barlow et al. (2001) found North Pacific SSTs, the 

so-called North Pacific mode (NPM), to be related to summer streamflow and drought 

conditions across the Northeast US. On the other hand, the modes were generally related 

to spring and fall streamflow, which were correlated with the SO and Niño 3.4. Differences 

between the results from Barlow et al. (2001) may be due to how the NPM, using EOF 

analysis, was statistically constrained to be independent from the PDO that was 

simultaneously derived from the same data set. In the present case, the NPO and PDO 

indices are not orthogonal but strongly correlated so that no independent information was 

gained.  

In agreement with Xu et al. (2012), some PDO-streamflow associations were 

identified, particularly in April. The lagged relationship between Susquehanna streamflow 

and the PDO index found by Xu et al. (2012) may be an artifact of the autocorrelation 

inherent in the PDO time series and the PDO’s relationship with the PNA and NPO. For 

example, the winter PDO index may be correlated with the subsequent fall PNA index, 

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.26 NAO

AO 0.30 0.32 AO

AMO 0.31 AMO

Nino 3.4 Nino 3.4

SO SO

NPO 0.29 NPO 0.29

PNA -0.27 PNA

PDO PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.26 NAO

AO 0.32 AO 0.26

AMO -0.31 0.48 -0.39 AMO

Nino 3.4 -0.32 Nino 3.4

SO 0.27 -0.30 SO

NPO NPO

PNA PNA

PDO -0.28 PDO

J F M A M J J A S O N D DJF MAM JJA SON Annual

NAO 0.38 0.40 0.32 0.30 0.49 NAO 0.51

AO 0.41 0.27 0.37 0.42 0.40 0.53 AO 0.52 0.37 0.31

AMO 0.28 AMO 0.28

Nino 3.4 0.29 -0.27 Nino 3.4

SO -0.30 SO

NPO 0.27 0.34 0.26 NPO

PNA 0.37 -0.25 -0.30 PNA

PDO -0.40 -0.37 PDO -0.47

(c)Temperature  

(a) Streamflow 

(b) Precipitation 
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which was related to fall streamflow, resulting in the PDO index being correlated with 

future streamflow. 

 

Figure 5.3. Pearson correlation coefficients between mean monthly streamflow and precipitation for the 

Susquehanna, Delaware, and Hudson River basins for the period 1950-2010. All correlation coefficents are 

signifcant at the 5% level. 

Correlation coefficients between streamflow and precipitation are shown in Figure 

5.3, where all the correlation coefficients are significant at the 5% level. For all three river 

basins, the streamflow-precipitation correlation coefficients reached local minima in 

February-April, July, and November; local maxima were found in May-June, August-

October, and December. As shown in Figure 5.2, precipitation equals streamflow in 

February and March for the DRB and SRB and yet the correlation coefficients reach local 

minima in those months, suggesting that some of the precipitation is falling as snow. The 

same arguments for the HRB hold in January and February but streamflow exceeds 

precipitation in March so that snowmelt may contribute to the low correlation coefficients 

in March and April. The minima in July for all three river basins may be due to large base-

flow contributions and large evapotranspiration rates. Base-flow has a longer time-scale so 

that streamflow from prior months may be contributing to streamflow variability in 

subsequent months. Perhaps the most interesting minima occurred in November, when 

there also may be a base-flow contribution in this month given the relatively low mean 
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streamflow. Precipitation, in addition, may also be falling as snow, contributing little to 

streamflow. Perhaps it is the superposition of the base-flow contribution and snowfall that 

results in lower correlation coefficients in November.  

In contrast to the seasonal time scale, streamflow and precipitation are highly 

correlated on the annual timescale, with the correlation coefficients between annual-mean 

streamflow and precipitation for 1950-2010 being 0.92, 0.95, and 0.85 for the SRB, DRB, 

and HRB, respectively, similar to previous analyses (Najjar, 1999; Najjar et al., 2009).  

5.3.3 Temperature-climate mode Correlation Analysis 

Partial correlation coefficients (with the dependence of precipitation removed) 

between mean maximum temperature and streamflow are shown in Figure 5.4. In general, 

temperature was positively and significantly partially correlated with streamflow during 

the cold season for all three river basins, consistent with the fact that winter precipitation 

type is strongly dependent on daily mean maximum temperature on precipitation days so 

that precipitation on cold days will fall as snow and contribute little to streamflow (Serreze 

et al., 1998).  

 

Figure 5.4. Partial correlations coefficients between mean monthly maximum temperature and streamflow 

for the Susquehanna, Delaware, and Hudson Rivers for the period 1950-2010. Markers indicate the 

significance of the partial correlation coefficients.  

The negative relationships between temperature and streamflow during the summer 

are physically consistent with an increase in temperature leading to more 
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evapotranspiration and less streamflow. Having been correlated with temperature, 

streamflow may also have been influenced by climate modes through temperature effects 

in addition to precipitation effects, motivating the temperature-climate mode analysis 

discussed next. 

Tables 5.2c, 5.3c, and 5.4c show the results of the temperature-climate index 

(simple) correlation analysis. The NAO index was found to be positively correlated with 

temperature, with the strongest influence occurring in the winter, when the atmosphere is 

most dynamically active and an enhanced jet and surface southerly flow associated with 

the positive NAO phase advects positive temperature anomalies across the Northeast US 

(Notaro et al., 2006). The positive correlation coefficients between the AO and temperature 

are a result of a positive AO phase being associated with fewer polar air outbreaks across 

North America (Thompson and Wallace, 2001), whereas the moderate temperature-PNA 

and temperature-NPO connections are the result of a deep Eastern-US trough during 

positive PNA and negative NPO phases (Leathers et al., 1991). A moderate correlation was 

identified between temperature and the PDO index in the fall, though no significant 

correlation coefficients were found with the PNA and NPO indices.  

September Hudson River streamflow was negatively correlated to the PNA index 

but no precipitation-PNA association was identified. The PNA, however, was positively 

correlated with temperature during that month, and therefore the streamflow variability 

could possibly be related to PNA-related changes in temperature. The PNA-temperature 

relationships may also explain why, in November, the PNA index was significantly related 

to Susquehanna River streamflow and but not to precipitation. A positive PNA index, being 

associated with lower-than-normal temperatures, may have resulted in more precipitation 

falling as snow, reducing November monthly streamflow. Note that the PNA index needs 

to only be related to precipitation type to affect streamflow. On the other hand, the 

precipitation-climate mode relationships could explain the April streamflow-climate mode 

associations found for the Delaware River because April streamflow was strongly 

correlated with April precipitation (Figure 3) and was uncorrelated with April maximum 

temperature (Figure 5.4). The ENSO-induced Delaware River streamflow variability is 

also associated with the concurrent changes in precipitation. Despite the moderate 
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correlation between temperature and the indices for the AO and NAO, the NAO and AO 

were not found to be significantly correlated with winter streamflow.    

5.3.4 Wavelet Analysis 

In order to detect the major frequencies of oscillation in the hydrometeorology of 

the Mid-Atlantic Region, we now present wavelet power spectra of SRB, DRB, and HRB 

streamflow and precipitation along with the corresponding global wavelet spectra (Figures 

5.5, 5.6, and 5.7). 

The local power spectra revealed significant streamflow variability at a period of 

roughly two decades in all three river basins from roughly 1940 to 2010 (Figures 5.5a, 5.6a, 

and 5.7a). The global power spectra of streamflow also identified statistically significant 

wavelet power (Figures 5.5b, 5.6b, and 5.7b). For the Hudson and Susquehanna Rivers, 

1% significant peaks at 𝜆 = 26 years were identified, while a 0.1% significant peak at 𝜆 = 

26 years was identified for the Delaware River (Figures 5.5b, 5.6b, and 5.7b). Secondary 

peaks at 𝜆 = 18 years were also identified in the global wavelet spectrum of Hudson (1% 

significance) and Susquehanna (5% significance) River streamflow. The wavelet spectrum 

for Susquehanna River streamflow also contains a 5% significant peak at ~10 years, which 

was not found for the other two rivers.  

 The wavelet power spectra of precipitation (panels c and d of Figures 5.5, 5.6, and 

5.7) are similar to the wavelet power of streamflow, suggesting that the streamflow 

variability was primarily driven by regional precipitation changes. This is not surprising 

given the strong correlation between annual-mean streamflow and annual-mean 

precipitation noted earlier (Section 5.3.2). The statistical significance of the peaks, 

however, are lower, especially for HRB and DRB precipitation, where the peaks at 𝜆 = 26 

years only exceed the 5% significance level (Figures 5.5d, 5.6d, and 5.7d). The peak at 𝜆 

= 26 years for Susquehanna River streamflow is nearly significant at the 1% level. There 

is also a secondary peak at ~18 years for the DRB not found for the SRB or HRB, though 

a similar peak was found in the global spectra for Hudson River streamflow.  
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The results from the wavelet analysis of temperature (not shown) identified no 

significant decadal variability for all three river basins and support the idea that streamflow 

variability at the decadal timescale was mainly driven by precipitation changes.  

 

Figure 5.5. (a) Normalized wavelet power spectrum of Susquehanna River streamflow from 1900 to 2010 

together with the global wavelet power spectrum (b). (c) The normalized wavelet power spectrum of SRB 

precipitation together with the global wavelet power spectrum (d). Thick black contours in wavelet power 

spectra enclose areas of 5% significance against a red-noise background. Light shading represents the cone 

of influence. In the global power spectra, thick black lines represents the global wavelet power estimates and 

thin dashed black lines are the 95%, 99%, 99.9% confidence bounds against red-noise background spectra. 

Periods of peaks in the global power spectra exceeding 95% confidence are indicated.

 

Figure 5.6. Same as Figure 5.5 but for the Delaware River Basin. Note that the streamflow record is shorter 

(1913-2010).  
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Figure 5.7. Same as Figure 5.5 but for the Hudson River Basin. 

5.3.5 Wavelet Coherence Analysis 

Smoothed time series of the PDO index, SOI, and Delaware River anomalies are 

shown in Figure 5.8. From 1940 to 2000, the SOI and streamflow time series fluctuated 

coherently. For example, the streamflow decline associated with the 1960s drought was 

accompanied by a negative SOI and the subsequent wet period in the 1970s was 

accompanied by positive values of the SOI. Also note that the 1960s drought occurred 

during a strongly negative PDO phase. The relationship of the climate indices with 

streamflow of the Hudson and Susquehanna Rivers were similar (not shown). A wavelet 

coherence analysis was used to determine precisely what frequency components of the time 

series fluctuated coherently.  
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Figure 5.8. 10-year running mean of the PDO index, SOI, and Delaware streamflow anomalies. The smoothed 

time series were standardized by dividing by their respective standard deviations.  

Local and global wavelet coherence spectra show that the PDO, AMO, NAO, and 

SO are coherent with Susquehanna River streamflow at a variety of timescales (Figure 5.9). 

Wavelet coherence spectra for the Niño 3.4 index and NPO index are not shown for any of 

the basins because the Niño 3.4 results are nearly identical to those for the SO and the NPO 

results reveal no significant coherence. The PDO, NAO, and SO were found to be coherent 

with Susquehanna River streamflow at multi-decadal timescales, mainly in the latter half 

of the record. The wavelet coherence analysis detected a 7-year lagged (i.e., streamflow 

leads) relationship with the PDO at 𝜆 = 23 years, an in-phase relationship between 

streamflow and the SO at 𝜆 = 25 years, and a 2-year lagged relationship with the NAO at 

20 years, where the peaks were inferred from the significance of global coherence as shown 

in Figure 5.9e and the phase relationships were determined by finding the circular mean of 

the phase in the local coherence spectra at each period. The AMO has a multidecadal peak 

( = 23 years in the global spectra), which reflects local coherence in the 1950s and 60s. 

The secondary peak in SO global coherence significance at 𝜆 = 18 years suggests that the 

region of local coherence in Figure 5.9c is actually the merger of two separate peaks. The 

SO and the PDO also show peaks in the global spectra at around 10 years, which are 

presumably related to local spectra significance since approximately 1990. The phases are 
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roughly opposite to those corresponding to the ~20-year periods, the implications of which 

will be discussed in Section 5.4.6. 

Figure 5.9. (a) Wavelet coherence of monthly Susquehanna River streamflow and the (a) PDO, (b) NAO, (c) 

SO, and (d) AMO indices during 1900-2010. Thick black contours indicate significance at the 5% level and 

arrows indicate relative phase relationships (see legend in the lower right). Light shading represents the cone 

of influence. The wavelet coherence spectra were truncated to four years for clarity. Arrows are only plotted 

for those wavelet coherence values exceeding 0.55. (e) Significance of the 1900-2010 time-averaged wavelet 

coherence between streamflow and the climate indices.  

 

Figure 5.10. Same as Figure 5.9 but for Susquehanna River Basin precipitation 
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Wavelet coherence between SRB precipitation and climate modes (Figure 5.10) are 

broadly similar to spectra between Susquehanna River streamflow and climate modes, with 

both coherence spectra having significant (95% confidence) peaks for the SO at 

approximately 18 and 26 years and for the PDO at about 10 and 20 years. However, the 

AMO and NAO peaks, significant in the streamflow global coherence spectra, have less 

than 85% confidence in the corresponding precipitation spectra. 

Wavelet coherence results for the DRB (Figures 5.11 and 5.12) were broadly 

similar to those for the SRB in terms of dominant periods, phase relationships, and 

temporal variability, except that the significance in the local spectra for the PDO and SO 

at ~20 years extended earlier into the 20th century. As with the SRB, the coherence between 

streamflow and climate modes was similar to that between precipitation and climate modes, 

except that precipitation generally had a greater response to the PDO and SO at ~20 years, 

suggesting that another mechanism may be weakening the response of streamflow to the 

climate modes.  

The local coherence significance region extending from 1980 to 2010 

corresponding to local coherence between the SO and streamflow at ~10 years for the SRB 

is also present for the DRB, with the same out-of-phase relationship as the SRB. The PDO 

streamflow relationships at ~10 years were found to be identical. In particular, the local 

coherence spectra for SRB and DRB precipitation contain significance regions at ~10 years 

(extending from 1980 to 2010), which are similar and smaller than those for streamflow. 

The differences indicate that another mechanism enhanced the streamflow response to the 

PDO, unlike the responses at ~20 years. The difference between the streamflow and 

precipitation response to the PDO is not, however, evident in global coherence spectra for 

the SRB, unlike for the DRB, where the confidence of peak for precipitation is 

approximately 5% less. Statistically significant global coherence between Delaware River 

streamflow and the NAO index at 𝜆 = 17 years was also identified, though locally little 

statistical significance was found. No global or local statistically significant NAO-

precipitation relationships were detected. At both 10 years and 20 years the precipitation-

PDO and precipitation-SO relationships were similar to the streamflow-climate mode 
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relationships, suggesting that precipitation was the primary driver of the multi-decadal 

streamflow variability, which is influenced by the PDO and SO.  

 

Figure 5.11. Same as Figure 5.9 but for Delaware River streamflow for 1913-2010. 

 

Figure 5.12. Same as Figure 5.9 but for Delaware River Basin precipitation. 
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Figure 5.13. Same as Figure 5.9 but for Hudson River streamflow. 

 

Figure 5.14. Same as Figure 5.9 but for Hudson River Basin precipitation.  

The wavelet coherence between the four climate modes and Hudson River 

streamflow is shown in Figure 5.13.  The wavelet coherence analysis detected a statistically 

significant coherent and in-phase SO-streamflow relationship at 𝜆 = 25 years, as indicated 
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by the peak in global coherence (Figure 5.13e). A period of significant coherence between 

the PDO and streamflow extending from 1940 to 2010 was also identified at  𝜆 = 23 years, 

with streamflow lagging by 7 years. The results were similar to those for the other rivers 

except that the Hudson River streamflow relationship with the SO was stronger than the 

Susquehanna-SO relationship. The global coherence spectra indicate that the SO was more 

coherent with Hudson River streamflow than with streamflow of the other rivers at  𝜆 = 10 

years. It is also noted that the HRB precipitation response to the PDO and SO is stronger 

than the streamflow response, implying that another mechanism is operating to weaken the 

streamflow response.   

One commonality between the HRB and SRB is the NAO-streamflow 

relationships; little statistically significant local coherence was found for the DRB, whereas 

both Hudson and Susquehanna River streamflow were both significantly coherent with the 

NAO at ~18 years. The commonality also exists in the local coherence spectra for 

precipitation but is less evident. A transient relationship between precipitation and the 

AMO in the HRB—not existing in the local coherence spectra for the DRB and SRB—was 

also found in the period band of 6-8 years from 1900 to 1960. A corresponding peak in the 

global coherence was also identified, which was also not found for the DRB and SRB.  

It is possible that the observed streamflow variability at a period of 20 years was 

partially due to temperature variability. The wavelet coherence between climate indices 

and temperature for each river basin was therefore computed (not shown). For the SRB no 

significant wavelet coherence with temperature and the SO and AMO indices at a period 

of 20 years was found. On the other hand, significant out-of-phase coherence was found 

with the PDO index at a period of 20 years, suggesting that the positive phase of the PDO 

contributes to drier and cooler conditions across the Northeast US at that timescale. Namias 

(1966) also found the 1960s drought to be accompanied by below-normal temperatures 

associated with a prevailing northerly wind component. Identical relationships with the 

PDO index were found for the DRB and HRB and little to no significant coherence was 

found with the other climate indices. The out-of-phase relationship between the PDO and 

temperature could explain the weaker response of streamflow to the PDO for the DRB and 
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HRB; cooler conditions would favor more streamflow on longer-scales, opposing the 

drying effects caused by the lack of rainfall. 

5.3.6 Impact of Climate Modes on Low-frequency Variability of Streamflow 

The PDO and SO components of mean annual anomalies of Delaware streamflow, 

estimated using Equation (5.7), are shown in Figure 5.15 from 1920 to 2010, when large, 

low-frequency fluctuations were present. These climate modes appear to have contributed 

substantially to the 1960s drought and the pluvials of the 1970s and 2000s. To quantify the 

contributions of these two climate modes to the three aforementioned hydrometeorological 

events, the mean streamflow anomaly for the periods 1963-1968, 1971-1979, and 2002-

2007 was computed for the SO component, the PDO component, and the observed time 

series for the Susquehanna, Delaware, and Hudson Rivers (Table 5.5). For the 1960s 

drought, the SO and PDO contributions were greatest for the Hudson and lowest for the 

Susquehanna, being roughly a factor of two larger for the Hudson; the SO contributions 

were about twice those of the PDO. Note that the contributions of the SO and PDO may 

not be independent because of the close relationship between these two climate modes 

(Newman et al., 2003).  

 

Figure 5.15. The observed annually averaged Delaware River streamflow anomalies and the PDO and SO 

components of the observed time series for 1920-2010. 
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The impact of the PDO and SO on the subsequent wet period 1971-1979 was 

similar for all three rivers but was greatest for Delaware River. The PDO’s contribution 

was also smaller compared to the SO contributions for all three rivers. Similarly, the SO 

and PDO contributed approximately equally to the pluvial of the 2000s, with the 

Susquehanna being most influenced and the Hudson the least. In fact, the contributions 

differed by more than a factor of two, opposite to the climate-mode contributions to the 

1960s drought. Results for precipitation (not shown) were similar to those for streamflow, 

indicating that the climate modes influenced streamflow during these hydrometeorological 

events mainly through precipitation. In addition to the SO and PDO, the analyses presented 

in Figure 5.15 and Table 5.5 were conducted for the NAO, NPO, AMO, and Niño 3.4 

indices. No substantial contributions to the 1960s drought and pluvials of the 1970s and 

2000s were found for the NAO, NPO, and AMO; Niño 3.4 results were very similar to 

those for the SO.  

5.3.7. Teleconnection Analysis 

Among all of the climate modes, the Southern Oscillation appears to have the 

greatest influence on Mid-Atlantic streamflow. Further, the SO influence is greatest at a 

period of approximately two decades. To investigate a possible teleconnection influence of 

the SO on Mid-Atlantic streamflow, a wavelet coherence analysis was conducted between 

the SO index and climate-division precipitation. The phase of the SO-precipitation 

relationship at a period of 20 years for each climate division is indicated by black arrows 

in Figure 5.16 when the global coherence exceeds the 5% significant level. The SO-

precipitation relationship was found to be in-phase across the eastern US, with statistically 

significant global coherence limited to the Northeast. A remote region of significant global 

coherence is also present in the Western and Southern US but the phase relationship is 

opposite to that of the Northeast.  
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Figure 5.16. Phase relationships of the SO (black arrows) and Delaware River streamflow (red arrows) with 

climate divisional precipitation anomalies at a period of 20 years for 1913-2010. Arrows are located at the 

centroids of the climate divisions for which the global coherence was significant at the 5% level 

A similar analysis was conducted between Delaware River streamflow and climate-

division precipitation (red arrows). Remarkably, it was found that the global coherence 

spatial pattern was nearly identical to the SO-precipitation associations. The remote region 

of significant global coherence in the West is suggestive of a teleconnection pattern, with 

wet conditions in the Western US being accompanied by drier conditions in the East. In 

fact, Namias (1966) noted that while the Northeast was dry during the period 1962-1966, 

the Southwest and Northern plains were wet, generally consistent with the results presented 

in Figure 5.16. Seager et al. (2005) found, using a general circulation model, that tropical 

SSTs can produce the Dust Bowl in the 1930s for the Southwestern US, but Seager et al. 

(2012) showed that the models cannot produce the 1960s drought in the Northeastern US. 

However, Figure 5.16 implies that Delaware River streamflow is phase-locked to 

Southwestern US precipitation and so must also be phase-locked to tropical SSTs that 

forced precipitation variability in that region.  

5.4. Discussion 

The AMO, NAO, PDO, and the SO were found to be contributors to decadal to 

multi-decadal variability of streamflow in the Mid-Atlantic region of the US. The wavelet 
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coherence analysis identified the PDO and the SO as being the main regulators of the 

enhanced 26-year streamflow and precipitation variability identified in the wavelet power 

analysis. As noted by Mantua (2010), the PDO is most energetic at periods of 15-25 years 

and 50-70 years, which could explain why the PDO is most coherent with precipitation at 

a period of 22-24 years. Whitney (2010) speculated that the NAO could be responsible for 

the 26-year periodicity. However, our analysis clearly shows that the NAO plays a minor 

role while the PDO and the SO play a major role. Variability of Susquehanna River 

streamflow at low-frequencies was also noted by Labat (2008), who revealed statistically 

significant periodicities at periods of 3, 12, and 27 years using a global wavelet analysis. 

Though Labat (2008) and Whitney (2010) did not analyze precipitation, the findings from 

this study suggest that the 26-27 year streamflow periodicities identified in these studies 

were driven by precipitation changes related to the SO and PDO, and to a lesser extent, the 

NAO.  

Labat (2010), using a cross-wavelet analysis, determined that the PDO was driving 

North American continental freshwater discharge variability at a period of 22 years, a result 

similar to that found in this study (despite the very different study regions considered). 

However, this study added the phase relationship. Labat (2010) found the SO to have a 

weaker relationship at 21 years with North American continental freshwater discharge.   It 

is important to note that, while the PDO and ENSO are regarded as distinct phenomena, 

the PDO is dependent on ENSO. According to Newman et al. (2003), the PDO may be 

regarded as the reddened response of atmospheric noise and ENSO, which could be 

problematic when separating pure ENSO and PDO signals in North American drought and 

climate proxies. Numerous studies have analyzed the connection between North Pacific 

SSTs and ENSO (Bjerknes, 1969; Luksch and Storch, 1992; Trenberth and Hurrell, 1994; 

Nath and Lau, 1996), further supporting the similarity between the streamflow-PDO and 

streamflow-SO relationships as identified in our wavelet coherence analysis. According to 

Latif and Barnett (1996), SST anomalies in the North Pacific undergo a 20-year oscillation 

involving the interaction between the Aleutian Low and the subtropical gyre. This model 

suggests that a positive SST anomaly in the North Pacific resulting from an anomalously 

strong subtropical gyre weakens the Aleutian Low, which alters air-sea heat fluxes, 

reinforcing the initial SST anomaly set up by the subtropical gyre. Changes in the wind 
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stress curl associated with the atmospheric response to the SST anomalies, however, act to 

spin down the subtropical gyre, reversing the initial temperature anomaly, with the oceanic 

response lagging the changes in wind stress curl. It is the interaction between the Aleutian 

Low and subtropical gyre that generates a 20-year oscillation, which coincides with the 

period at which the PDO is most coherent with Northeast US streamflow and precipitation, 

providing a possible physical mechanism for the PDO-streamflow teleconnection.  

The similarity between the streamflow-SO and the streamflow-PDO relationships 

can be interpreted using the “atmospheric bridge” concept (Alexander, 2002). The essential 

component of the atmospheric bridge is the anomalously strong Aleutian Low during El 

Niño phases (Bjerknes, 1969), which alters heat fluxes, Ekman transport, and the ocean 

mixed layer depth, resulting in negative SST anomalies in the central North Pacific (Nath 

and Lau, 1996). Low SSTs in the central North Pacific contribute to a positive phase of the 

PDO and thus similarities between the streamflow-PDO and streamflow-SO relationships 

are expected.  

A common theme from the wavelet analysis is the relationship between streamflow 

and four dominant modes on the ~20 year timescale. Even the less-coherent streamflow-

NAO and streamflow-AMO relationships have a preferred timescale similar to the SO and 

PDO. Perhaps this is due to the link of the AMO and NAO with ENSO. For example, 

several studies have related NAO variability to SO variability and Atlantic Ocean SSTs to 

ENSO through Ekman pumping, ocean dynamics, and surface heat fluxes (e.g., Alexander 

et al., 2002). Furthermore, some studies suggest that the AMO may also influence the NAO 

and the PDO (Higuchi et al., 1999; Czaja and Frankignoul, 2002; Zhang and Delworth, 

2007). Finally, solar activity may be responsible for the similarity in the wavelet coherence 

spectra. For example, Velasco and Mendoza (2008) found that solar activity influences the 

AMO, PDO, SO and the NAO at a 22-year timescale. Hence it is not surprising that a 

similar timescale was found for all climate indices in the wavelet coherence analysis. 

However, the SO and PDO have much stronger coherence with Mid-Atlantic streamflow 

than the NAO and AMO do. 

Our finding on the connection between the SO and the 1960s drought contrasts with 

that of Seager et al. (2012), who attributed it to internal atmospheric variability. The 
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contrasting results may be due to differences in statistical approaches; Seager et al. (2012) 

only considered the correlation between Northeast US seasonal precipitation and North 

American precipitation and concluded that Northeast precipitation was only locally 

correlated so that teleconnections were unlikely during any season. In contrast, in the 

present study, a correlation pattern suggestive of a teleconnection pattern was identified at 

a period of 20 years, where precipitation in the Southwestern US fluctuated coherently with 

Northeast precipitation. Another potential problem in Seager et al. (2012) is the exclusive 

use of standard correlation coefficients. A standard correlation coefficient quantifies the 

linear relationship between two time series on all timescales simultaneously, ignoring the 

fact that the phase relationships between two time series at one timescale can be opposite 

to a phase relationship at a another timescale. Figure 5.12, as an example, shows that at a 

period of 20 years the SO is in-phase with DRB precipitation, whereas at period of 10 years 

it is out-of-phase with precipitation. Effects at the two timescales could cancel each other, 

resulting in a low overall correlation coefficient, even though the relationships are strong 

at particular timescales.  

Seager et al. (2012) also base their conclusions on atmospheric global circulation 

model (GCM) simulations with prescribed SSTs, but uncertainties in the representation of 

convection in GCMs can manifest as false simulations of precipitation, particularly in terms 

of spatial patterns and variance (Peters et al., 2013). The uncertainties in convection and 

cloud feedback were also noted by Randall et al. (2007) and represent some of the largest 

problems in the latest GCMs.  Given that the Northeast US given is relatively small, an 

accurate determination of the spatial pattern of precipitation is critical; small errors in the 

locations can produce large differences among GCM ensembles. The 1930s drought, for 

example, can be reproduced by forcing the GCM with SSTs during that period but the 

drought center is too far south (Cook et al., 2008). The statistical analysis of historical data 

in this study provides compelling evidence that the 1960s drought was externally forced, 

with precipitation anomalies fluctuating coherently with those across the Southwestern US, 

a region where tropical influences on drought have already been documented (Seager et 

al., 2005).  

 5.5. Conclusions 
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Streamflow, precipitation, and temperature variability in the Mid-Atlantic region 

of the US was analyzed and linked to dominant modes of climate variability at annual to 

multi-decadal timescales. The influence of climate modes on precipitation, temperature, 

and streamflow were found to vary from month to month and from season to season. 

Moreover, correlation coefficients were generally similar for the three river basins 

considered here. The streamflow-climate mode relationships, precipitation-climate mode 

relationships, and temperature-climate mode relationships can be physically attributed to 

alterations in storm tracks, jet-stream positions, and prevailing winds, all of which affect 

the air mass characteristics across the Mid-Atlantic region. Both streamflow and 

precipitation showed significant variability at a period of 26 years as revealed by wavelet 

power spectra. Moreover, such periodicities could not be attributed to red-noise; rather, it 

was the result of ENSO and the PDO. The SO explains 37%-54% of the streamflow decline 

across the Mid-Atlantic region during the 1960s drought, 33-49% of the 1970s pluvial, and 

19- 50% of the 2000s pluvial. It is therefore important for hydrological and climate studies 

to include such oscillations when assessing future impacts of climate change on the 

hydrology and ecology of the Hudson, Susquehanna, and Delaware watersheds and their 

receiving estuaries. It is hoped that the results from this study will aid hydrological and 

climate forecasts so that predictions about the future state of hydrological systems such as 

rivers and estuaries under a changing global climate system can be more accurately 

assessed. 
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Chapter 6 

Salinity and Streamflow Variability in the Mid-Atlantic 

Region of the United States and its Relationship with 

Large-scale Atmospheric Circulation Patterns 

6.1. Introduction  

Estuaries are complex, diverse aquatic systems of ecological, economic, industrial, 

and recreational importance. Estuaries contain seas ports and shipping channels through 

which commodities are transported. Local economies are supported through fishing 

activities in the estuaries, which contain diverse aquatic species. Increased human 

development around the estuaries, however, has negatively impacted the health of 

estuaries. For example, overfishing has threatened many species residing in estuaries but 

efforts have been made to mitigate overfishing. Other anthropogenic impacts include: 

pollution, agricultural waste, and dredging (Najjar et al., 2010; Kreeger et al., 2010). 

Human waste, as an example, resulted in low levels of dissolved oxygen in the Delaware 

River in the early 1900s but has since recovered as a result of substantial cleanup efforts 

(Albert, 1998).  Agricultural waste also harms estuaries because it often contains nitrogen, 

which increases the prevalence of toxic algal blooms.  

The health of estuaries also responds to natural fluctuations. Streamflow, for 

example, impacts many estuarine parameters, such as the circulation, vertical stratification, 

eutrophication, and hypoxia. The primary role of streamflow is to drive the exchange 

circulation, whereby fresher water at the surface flows seaward and saltier water flows at 

depth flows landward (MacCready and Geyer, 2010). If the circulation becomes strong, 

then a vertical salinity gradient can be generated, which may lead to hypoxia. Streamflow, 

for example, has been shown to cause summer vertical salinity stratification and hypoxia 

in the Chesapeake Bay (Hagy et al., 2004) and to promote eutrophication in the Hudson 

River (Howarth et al., 2000).  Hypoxia and eutrophication are serious problems in estuaries 

throughout the world and have been related to declines in numerous aquatic species (Diaz 

and Rosenberg, 2008), such as zooplankton in the Chesapeake Bay (Kimmel and Roman, 

2004; Miller et al., 2004). Thus, to understand changes in many historical estuarine 
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parameters demands knowledge of how streamflow varied historically. If the causes of 

streamflow variability are better understood, then assessments about the future health of 

estuaries can be made.  

Streamflow in the Northeast region of the United States has fluctuated substantially, 

resulting in, for example, droughts, but the causes of such fluctuations are subject to debate. 

Historical streamflow variability has been related to large-scale climate indices such as the 

El-Niño/Southern Oscillation (ENSO), where the streamflow decline during the 1960s 

drought, for example, may have been partially forced by the Southern Oscillation (SO; 

Schulte et al., 2015). Seager et al. (2012), on the other hand, argued that the decline was 

the result of intrinsic atmospheric variability. During the 1960s drought, salinity in the 

Delaware River was anomalously high and created conflicts between New York City and 

Philadelphia water management agencies. The potential for salinity intrusions in the 

Philadelphia area water supply also led to the monitoring of the salt front position in 

Delaware River (Hull and Titus, 1986). Najjar et al. (2010), using climate models, 

determined that warming in response to greenhouse gas forcing is likely across the 

Delaware, Hudson, and Susquehanna River basins. The climate model results, however, 

showed disagreement with precipitation projections and suggested that precipitation 

increases are still in the range of interannual variability. The uncertainties in the 

precipitation projections suggest that climate factors impacting historical precipitation 

variability need to be better understood.  

The ocean also impacts estuaries through changes in sea level (Ross et al., 2015) 

and meandering of the Gulf Stream (Lee and Lwiza, 2008). Through the analysis of long-

term salinity observations and numerical modeling, sea-level rise was found to lead to 

measureable increases in salinity in the Chesapeake (Hilton et al., 2008) and Delaware 

(Ross et al., 2015) Bays. These studies suggested that continued sea-level rise will lead to 

substantial salinity increases in these estuaries throughout the 21st century. Lee and Lwiza 

(2008) found fluctuations in the Gulf Stream position to influence Chesapeake Bay salinity, 

with a more poleward location being associated with higher salinity. Taylor et al. (1998) 

found shifts in the Gulf Stream position to follow ENSO events, with the SO leading by 

two years. The ENSO-Gulf Stream linkage would then suggest that historical salinity 
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variability was influenced by ENSO-related changes in mid-latitude atmospheric 

circulation patterns. However, Lee and Lwiza (2008) found no link between the SO and 

Chesapeake Bay bottom salinity.  

In this study, monthly salinity variability in the Hudson River, Delaware, and 

Chesapeake Bay estuaries will be investigated using wavelet analysis, which identifies the 

dominant frequencies of variability and how they change with time. The use of daily 

streamflow data in addition will allow salinity variability to be linked to daily weather 

events occurring on synoptic timescales. The previous work of Whitney (2010) and Lee 

and Lwiza (2010) used monthly data, which may have precluded the extraction of 

important physical phenomena occurring on daily timescales. In particular, the mid-latitude 

response to tropical convection occurs on daily timescales and this fact underscores the 

need for an analysis of daily streamflow data.  

The paper is organized as follows. The data used are described in Section 6.2 and a 

brief review of wavelet analysis is presented in Section 6.3. In Section 6.4, results from a 

composite analysis of daily streamflow anomalies with atmospheric fields are presented 

and results from the wavelet analysis are also presented. The section concludes with an 

analysis of fluctuations in the Gulf Stream position and linkages with tropical convection 

and the overlying atmospheric conditions. Implications for historical salinity variability are 

also discussed. Concluding remarks are presented in Section 6.5.  

6.2. Data 

In this study, streamflow and estuarine salinity data are analyzed to determine the 

main climate drivers of their variability. Several common climate indices are considered in 

this study: the North Atlantic Oscillation (NAO), Pacific-North American teleconnection 

pattern (PNA), the Gulf Stream, and the Niño 4 indices. Meteorological fields such as mean 

sea level pressure (MSLP) and 300-hPa streamfunction are also analyzed to investigate 

their relationships with streamflow and salinity conditions. The upper tropospheric 

streamfunction was chosen for this study because circulation anomalies in the mid-latitudes 

often arise from the propagation of Rossby waves from the tropics (Hoskins and Karoly, 

1981) and the Rossby waves are most prominent in the upper troposphere. 
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6.2.1. Salinity and Salt Front Position 

Chesapeake Bay salinity data (Figure 6.1) for 1985-2013 were obtained from the 

Chesapeake Bay Program (CBP), which samples the Bay approximately twice monthly. 

Tidal fluctuations and weather events can produce rapid changes in salinity, but these are 

damped in the mesohaline region of Bay, making the infrequent sampling suitable for 

estimating the monthly average in this region (Gibson and Najjar, 2001). We thus limit 

ourselves to the analysis of salinity data in the upper 5 m of the water column of the central 

bay as shown in Figure 6.1 (stations CB 4.1C, CB 4.1E, CB 4.1W, CB 4.2C, CB 4.2E, CB 

4.2W, CB 4.3C, CB 4.3E, CB 4.3W, and CB 4.4), which were spatially and temporally 

averaged for each month of the time series.  

 

Figure 6.1. The locations of CBP stations, USGS gauging stations, Reedy Island, and The Battery, New York.  

Daily Reedy Island conductance data for 1985-2013 were obtained from the United 

States Geological Survey (USGS). The daily conductance was converted into practical 

salinity units (psu) as describe by Lewis and Perkin (1981) and the daily values were 
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converted into monthly means. For 6% of the months, there were greater than 15 days with 

missing data and so monthly means were not computed for those months. However, after 

the monthly means were calculated the months with missing values were filled using a 

linear interpolation.    

Daily Hudson River salt front position data for 1991-2013 were obtained from the 

USGS and were converted into a monthly anomaly time series by first computing monthly 

averages and then removing the mean annual cycle. Salt front position was calculated using 

a threshold of 100 mg L-1 chloride concentration and represents the location, in river 

kilometers, above The Battery, New York City (Figure 6.1). A daily value for the time 

series is the most upstream location at high slack tide for the previous day. The Hudson 

salt front time series was extended back to 1985 by linear regressing the monthly anomaly 

time series with monthly Waterford streamflow anomaly (see below). The extended time 

series allows for a more consistent comparison with salinity variability of the Delaware 

and Chesapeake Bay estuaries and also reduces the impact of edge effects inherent in 

wavelet analysis (Section 6.3).  

6.2.2. Streamflow  

Daily streamflow data for the Susquehanna River at the Conowingo Dam 

(01578310), the Delaware River at Trenton (01463500), New Jersey, and the Hudson River 

at Waterford, New York (01335754) were obtained from the USGS for the period 1985-

2014. The data were converted to daily anomalies by subtracting off the mean annual cycle.  

6.2.3. Meteorological Data 

Daily European Center for Medium Range Forecast reanalysis (ERA) 300 hPa 

streamfunction and mean sea-level pressure data were used. The data, on a 2° ×  2° grid, 

were converted into daily anomalies by removing the mean annual cycle.  

6.2.4. Climate Indices 

Daily indices for the North Atlantic Oscillation (NAO) and the Pacific-North 

American teleconnection pattern (PNA) were obtained from the Climate Prediction Center 

(CPC). The NAO represents the coherent fluctuations in sea-level pressure (SLP) over the 
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North Atlantic Ocean. Its index is defined as the difference between the normalized SLP 

anomalies at Lisbon, Portugal and Stykkisholmur, Iceland (Hurrell, 1995). During the 

positive phase of the NAO, the Jetstream over the Atlantic Ocean is stronger than normal 

and results in warmer-than-normal conditions across the Northeast US during the winter. 

The PNA index is defined as leading Empirical Orthogonal Function of Northern 

hemisphere 500 hPa geopotential height between 20°N and 90°N (Barnston and Livezey, 

1987). A positive phase is associated with a ridge of high pressure over the western US and 

a trough of low pressure over the eastern US.  

The monthly Niño 4 index data were obtained from the CPC and represent the 

strength and evolution of ENSO. The index represents the average sea surface temperatures 

in the region bounded by 5°S-5°N and 160°E-150°W. The Gulf Stream Index (GSI) data 

for 1985-2013 were obtained from http://www.pml-gulfstream.org.uk/. The index captures 

the meandering of the Gulf Stream about its mean position, where a positive value indicates 

that the north wall of the Gulf Stream is poleward of its mean position and a negative value 

indicates that it is equatorward of its mean position.  

6.3. Methods  

6.3.1 Wavelet Analysis 

To compute the wavelet transform of time series, one needs to choose a wavelet 

function. The Morlet wavelet was chosen for this study and is given by 

 
𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔𝜂𝑒−

1
2

𝜂2

, 
(6.1) 

where 𝜔 is the dimensionless frequency and η is the dimensionless time. The reason for 

choosing the Morlet wavelet is that it provides a balance between time and frequency 

localization and is thus recommended for identifying features of geophysical time series 

(Grinsted et al., 2004). The wavelet transform of a time series X = (𝑥𝑛; n = 1, ... , N) is 

given by 

𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)]

𝛿𝑡

𝑠

𝑁
𝑛′=1 ],                                         (6.2) 
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where 𝛿𝑡 is a uniform timestep (one month or one day in this study), s is the scale of the 

Morlet wavelet, and 𝜂 = 𝑠 ⋅ 𝑡. The more traditional Fourier period 𝜆 is approximately 

related to the wavelet scale by 𝜆 = 1.03𝑠. The wavelet power at a given scale and time is 

then given by |𝑊𝑛
𝑋(𝑠)|2. The pointwise significance of each wavelet power coefficient can 

be test invidually against a red noise background, where it is assumed that wavelet power 

coefficients are independent. The reader is referred to Torrence and Compo (1998) and 

Grinsted et al. (2004) for a more detailed discussion of the theory of wavelet analysis and 

pointwise significance testing used in this paper.  

The relationships between two time series was quantified using a wavelet coherence 

analysis. The (local) wavelet coherence between two time series X and Y is given by 

 
𝑅𝑛,𝑥𝑦

2 (𝑠) =
|𝑆(𝑠−1𝑊𝑛

𝑋𝑌(𝑠)|
2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
 , 

(6.3) 

 

where 𝑊𝑛
𝑋𝑌(𝑠) is the cross-wavelet transform, defined as the product of the wavelet 

transform of X and the complex conjugate of the wavelet transform of Y, and S is a 

smoothing operator defined by S(𝑊𝑛
𝑋(𝑠)) = 𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒(𝑊𝑛

𝑋(𝑠))) .  𝑆𝑡𝑖𝑚𝑒 represents 

smoothing in time and 𝑆𝑠𝑐𝑎𝑙𝑒 is smoothing along the wavelet scale axis. A coherence value 

of 0 signifies that the two time series are independent and a coherence value of 1 indicates 

that the two time series are linearly related at the given frequency and time. The statistical 

(pointwise) significance of wavelet coherence is obtained using Monte Carlo methods by: 

(1) generating a large number of synthetic data pairs with the same lag-1 autocorrelation 

coefficients as the input time series, (2) calculating the wavelet coherence for each pair, 

and (3) estimating the significance level at each scale using values outside the cone of 

influence (Grinsted et al., 2004). A more detailed discussion of wavelet coherence can be 

found in Grinsted et al. (2004). 

 It will also be useful to calculate the wavelet coherence between two time series 

when their common dependence is removed. Such a calculation requires partial wavelet 

coherence (Ng and Chan, 2012), which is defined analogously to a partial correlation 
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coefficient; for two time series X and Y that are both related to a time series Z, the partial 

wavelet coherence is defined as  

𝑃𝑅𝑛,𝑍
2 (𝑠) =  

|𝑅𝑛
𝑥𝑦(𝑠)− 𝑅𝑛

𝑥𝑦(𝑠)𝑅𝑛
𝑥𝑦(𝑠)∗|

2

(1− 𝑅𝑛,𝑥𝑧
2 (𝑠))(1− 𝑅𝑛,𝑦𝑧

2 (𝑠))
 ,                                             (6.4) 

where  

𝑅𝑛
𝑥𝑦(𝑠) =  

𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))

√𝑆(𝑠−1𝑊𝑛
𝑋(𝑠))𝑆(𝑠−1𝑊𝑛

𝑌(𝑠))

.,                                            (6.5) 

and the asterisk denotes the complex conjugate. If the influence of Z on either X or Y is 

strong, then the wavelet partial coherence will differ from the wavelet coherence. Statistical 

significance can be estimated using Monte Carlo methods in the same way as wavelet 

coherence.   

It is known that many pointwise significant results found in local spectra may be 

artifacts of multiple testing, arising from the large number of wavelet coefficients to which 

the pointwise significance test is applied (Maraun et al., 2007; Schulte et al., 2015). The 

problem can be remedied by applying an areawise test (Maraun et al., 2007), a geometric 

test (Schulte et al., 2015), or a cumulative areawise test Schulte (2015). In this study, the 

cumulative areawise test (referred to as the areawise test, hereafter) was applied because it 

was found to have greater statistical power than the geometric test. The areawise test 

assesses the cumulative areas of so-called pointwise significance patches, which are 

contiguous regions of pointwise significance. In other words, the area of a patch is tracked 

as the pointwise significance level increases from 𝛼𝑚𝑖𝑛 to 𝛼𝑚𝑎𝑥. The cumulative areas of 

patches corresponding to the input time series are then compared to that of a null 

distribution of cumulative areas associated with red-noise processes. In the present study, 

𝛼𝑚𝑖𝑛 = 0.82, 𝛼𝑚𝑎𝑥 = 0.98, and the spacing between pointwise significance levels was 

0.02. These choices of parameters were used because they were found to be associated with 

high statistical power (Schulte, 2015).  

An additional topological method will also be applied to wavelet power spectra. 

The method was introduced by Schulte et al. (2015) and can provide additional insight into 
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the time series in question. The idea of the procedure is to examine holes located in patches, 

which are similar to those found in annuli. These holes can arise from time series containing 

nonlinearities and can also arise when two nearby frequency components of a time series 

have associated wavelet power exceeding a red-noise background (Schulte et al., 2015). 

For pointwise significance levels of 0.1%, 1%, and 5%, holes are infrequently present in 

patches generated from red-noise processes so that patches containing holes in the wavelet 

power spectrum under consideration are less likely to result from stochastic fluctuations. 

In fact, according to Schulte et al. (2015), the probability of finding a hole at the 5% 

significance level is 3.4 × 10−4 and virtually zero at the 0.01 and 0.001 pointwise 

significance levels. It is therefore useful to project the centroids of holes existing at the 

0.1%, 1%, 5% significance levels onto the wavelet domain, resulting in a topological 

wavelet diagram.  

Characteristic timescales reported in this study were identified using global wavelet 

spectra, the time-averaged representations of the sample local wavelet spectra. For global 

power, periods of maximum time-averaged power were considered the dominant timescale 

of variability, where global power is calculated by averaging |𝑊𝑛
𝑋(𝑠)|2 over all time 

indices for a fixed scale.  For time-averaged coherence, an alternative definition to Eq. (3) 

was used, which is given by (Elsayed, 2006) 

𝐺𝐶(𝑠) =  
|𝑊𝑋𝑌(𝑠)|

2

(∑ |𝑊𝑛
𝑋|

2𝑁
𝑛=1 )(∑ |𝑊𝑛

𝑌|
2𝑁

𝑛=1 )
,                                        (6.6) 

where   

𝑊𝑛
𝑋𝑌(𝑠) =  ∑ 𝑊𝑛

𝑋(𝑠)𝑊𝑛
𝑌∗(𝑠)𝑁

𝑛=1 ,                                      (6.7) 

Equation (6.6) measures the coherence between two time series in the entire study period 

at a scale s.  Statistical significance of 𝐺𝐶(𝑠) was computed using Monte Carlo methods as 

follows: red-noise time series with the same lengths and lag-1 autocorrelation coefficients 

as the two input data series were generated and 𝐺𝐶(𝑠) was computed for each pair of red-

noise processes. The resulting distribution of 𝐺𝐶(𝑠) at each scale was then used to estimate 

the significance of the global coherence estimates. A global partial coherence spectrum can 

also be defined in the same way as global wavelet coherence by replacing the smoothing 
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operators in Eq. (6.5) by summations. Statistical significance was also computed using 

Monte Carlo methods by generating 2000 triples of red-noise processes with the same lag-

1 autocorrelation coefficients as the input time series.  

One can also sum the wavelet coherence at each time over scale. The result is scale-

averaged coherence measuring the linear correlation between two time series as function 

of time. The temporal resolution of the correlation time series is determined by the Nyquist 

frequency, which in this case corresponds to a period of two months for the monthly data. 

Statistical significance can be estimated by generating red-noise time series with lag-1 

autocorrelation identical to the input time series and calculating the scale-averaged 

coherence for each time.        

6.3.2 Estimation of Confidence Intervals 

The significance of global spectral peaks was further assessed by developing a 

block bootstrap procedure (Kunsch, 1989), which was chosen because adjacent wavelet 

coefficients are correlated and the correlation becomes more pronounced for large periods. 

The application of the traditional bootstrap would result in confidence bounds that are too 

narrow and thus statistical significance of quantities may be overestimated. The basic idea 

behind the procedure is to divide the wavelet coefficients at each period into overlapping 

blocks or segments and sample with replacement the blocks to create a synthetic set of 

wavelet coefficients. The synthetic set of wavelet coefficients should have the same 

number of elements as the original set of wavelet coefficients and can be used to calculate 

a bootstrap replicate of the desired wavelet quantity. If the procedure is performed a large 

number of times, a confidence interval can be estimated from the distribution of bootstrap 

replicates.  

Mathematically, to find the approximate 100(1 − 𝛽)% confidence interval of a 

global coherence estimate, the set of wavelet coefficients 

𝑊𝑋(𝑠) = {𝑊1
𝑋(𝑠), 𝑊2

𝑋(𝑠)  , … , 𝑊𝑁
𝑋(𝑠)} at each scale is divided into M = N – l - 1 

overlapping blocks of length 𝑙. For example, block 1 for 𝑊𝑋(𝑠) is 𝐵1(𝑠) =

 {𝑊1
𝑋(𝑠), 𝑊2

𝑋(𝑠), … , 𝑊𝑙
𝑋(𝑠)}, block 2 is 𝐵2(𝑠) =  {𝑊2

𝑋(𝑠), 𝑊3
𝑋(𝑠), … , 𝑊𝑙+1

𝑋 (𝑠)}, and the 

ith block is 𝐵𝑖(𝑠) = {𝑊𝑖
𝑋(𝑠), 𝑊𝑖+1

𝑋 (𝑠), … , 𝑊𝑙+𝑖−1
𝑋 (𝑠)}. The overlapping blocks form a 
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collection of M blocks 𝐵(𝑠) = {𝐵1(𝑠), … , 𝐵𝑀(𝑠)} at each scale. To obtain a bootstrap 

sample of wavelet coefficients, k blocks from each collection at a given scale are randomly 

sampled with replacement. It is noted that there is a probability 1/M of being drawn from 

their respective collections. The concatenation of the randomly sampled blocks 𝐵1
′ (𝑠), 

𝐵2
′ (𝑠), … , 𝐵𝑘

′ (𝑠)  forms a new set of wavelet coefficients 𝑊1
′(𝑠), 𝑊2

′(𝑠), … , 𝑊𝑚
′ (𝑠) with 

m = k l.  

A known problem with the block bootstrap procedure is the selection of the block 

length l, though it has been suggested that 𝑙 → ∞  and 𝑙/𝑛 → 0 as 𝑛 → ∞. (Wilks, 1997). 

In this study, the optimal block length was estimated using Monte Carlo methods as 

follows: 2000 surrogate pairs of red-noise processes with N = 1000 and lag-1 

autocorrelation coefficients equal to 0.5 were generated, (2) the global coherence between 

each of the 2000 pairs was calculated at all scales, and (3) the 95% confidence intervals of 

the global coherence estimates at each scale were calculated. The widths of the 2000 

confidence intervals at each scale were then computed to generate a distribution of widths 

at each scale and the mean of the widths was also calculated. The goal of the calculations 

was to find the largest c such that l = 𝑁𝑐 produced the widest confidence intervals. The 

experiment was repeated for different values of c and it was determined that c = 0.7 

generally produced the widest confidence intervals for all scales in both global power and 

coherence spectra. If c < 0.7, then the blocks were not large enough at large periods to 

account for the large auto-correlation among the wavelet coefficients. On the other hand, 

if c > 0.7, the blocks were too large for all periods and thus the randomization of the 

bootstrap method was compromised. Thus, c = 0.7 was used in this study. It may happen 

that 𝑁𝑐 is not integer-valued, in which case the block lengths were chosen to be the greatest 

integer less than 𝑁𝑐. Moreover, if the concatenation of blocks of length l resulted in a set 

of wavelet coefficients whose length was 𝐿 < 𝑁, a randomly sampled block with length N 

– L was added to the set to make the length equal to N.  

6.4. Results  

6.4.1 Salinity and Streamflow Time Series  
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The monthly streamflow and salinity time series are shown in Figures 6.2a, 6.2c, 

and 6.2e. Periods of high streamflow were associated with periods of low salinity for all 

three estuaries. Moreover, Figures 6.2b, 6.2d, and 6.2e indicate that salinity and streamflow 

were highly coherent, though the strength of the relationship fluctuated. For example, from 

1985 to 1990, Chesapeake Bay salinity and Susquehanna streamflow were less coherent 

relative to subsequent periods. Note that the large scale-averaged coherence for the Hudson 

salt front position from 1985 to 1991 (not shown) is an artifact of how the Hudson River 

salt front position data were extended back to 1985 using a linear regression.   

 

Figure 6.2.  (a) Standardized mean monthly Delaware Streamflow and Reedy Island salinity and (b) the scale-

averaged coherence between the two time series. Gray shading represents the 95% confidence interval. (c) – 

(d) Same as (a) – (b) except for Hudson River streamflow and Hudson salt front position. (e) – (f) Same as 

(a) – (b) except for Susquehanna River streamflow and Chesapeake Bay salinity. Time series were 

standardized by dividing the monthly means by the standard deviation for that month. 

The wavelet power spectra of daily streamflow for the Delaware, Hudson, and 

Susquehanna Rivers are shown in Figure 6.3. Statistically significant power was found in 

the 0.1-0.9 month period band, representing streamflow variability resulting from weather 

events. However, not all weather events produced streamflow variability exceeding a red-

noise background. For example, there is a lack of significant results in the 0.1-0.9 month 

period band around 1993 and 2002 for the Delaware and Susquehanna Rivers, which 

coincide with two dry periods, as shown in Figure 2. For the Delaware and Hudson Rivers, 

a region of areawise significance was also located at a period of 41 months, which extended 

nearly throughout the entire study period for the Delaware River. The global power spectra 
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indicate that streamflow for all three rivers exhibited significant variability at a period of 

41 months. The low-frequency peaks may have resulted from the modulation of daily 

weathers events, as investigated in Section 6.4.2.  

 

 

Figure 6.3. (a) Wavelet power spectrum of Delaware River streamflow. Contours enclose regions of 5% 

areawise significance. Light shading represents the Cone of Influence. (b) The corresponding global wavelet 

power spectrum. Graying shading represents the 95% confidence interval. (c) – (d) Same as (a) – (b) except 

for Hudson River streamflow. (e) – (f) Same as (a) – (b) except for Susquehanna River streamflow. 

 

The topological wavelet diagrams for the three rivers also suggest that there was significant 

power in the 0.1-0.9 month period band (Figure 6.4). For all three diagrams, the holes were 
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mainly located at periods less than 2 months, which is consistent with the wavelet power 

spectra showing most of the significant features at the same periods. Therefore, the features 

in the 0.1-0.9 period band are likely to be deterministic, recalling that the holes at the 0.01 

and 0.001 pointwise significance levels indicate with virtual certainty that the wavelet 

power did not arise from red noise (Section 6.3.1). The results from both the wavelet power 

analysis and topological analysis suggest with high confidence that the variability in the 

0.1-0.9 period band was forced and likely due daily weather events (Section 6.4.2).  

 

Figure 6.4. Topological wavelet diagrams corresponding to the wavelet power spectra of streamflow for the 

(a) Delaware, (b) Hudson, and (c) Susquehanna Rivers. Blocks indicate the centroids of holes at the pointwise 

significance level corresponding to the color. 

The wavelet power spectra of monthly salinity anomalies are shown in Figure 6.5. For the 

Delaware and Hudson Rivers, a few significant results were found from 2005 to 2010 in 

the 4-16 month period band. The wavelet power spectrum of Chesapeake Bay salinity 

indicates that significant power was present in the 8-16 month period band, though the 

global wavelet power spectrum indicated that the power was insignificant. The regions of 

enhanced power were found to generally correspond to the regions of enhanced power in 

the wavelet power spectra of streamflow. The similarity was particularly evident by 

inspecting the global wavelet spectra, where enhanced but not significant power was 

identified at periods of 18, 41 months, and 88 months. 
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Figure 6.5. (a) Wavelet power spectrum and (b) corresponding global wavelet spectrum of Reedy Island 

salinity. (c) – (d) Same as (a) – (b) but for the Hudson River salt front position. (e) – (f) Same as (a) – (b) 

except for Chesapeake Bay surface salinity. See Figure 6.3 for details of features found in the wavelet spectra. 

The low-frequency peak at 88 months may be due to Gulf Stream position 

variability, as noted by Lee and Lwiza (2008). This idea is supported by how the wavelet 

power at 88 months is greatest for Chesapeake Bay salinity, which is most sensitive to 

changes in the Gulf Stream position. The Chesapeake Bay was located closer to the mean 

Gulf Stream position relative to the Delaware and Hudson estuaries so that small changes 

in the Gulf Stream position would have led to greater changes in Chesapeake Bay salinity. 

On the other hand, the global wavelet power spectra of Delaware and Susquehanna River 
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streamflow contained peaks at approximately the same timescales. Therefore, the enhanced 

variance found for salinity may have resulted from atmospheric forcing. It is therefore 

necessary to investigate the relationship between atmospheric fields and streamflow.  

6.4.2 Composite Analysis  

Figure 6.6 shows the composite 300-hPa streamfunction anomaly pattern prior and 

during anomalously high streamflow events. The anomalous high streamflow events were 

defined as those events exceeding the 75th percentile of all daily flows, whereas 

anomalously low events were defined as those falling below the 25th percentile. The 

statistical significance of the composite means were calculated using the two-sample 

student-t, where the confidence that the composite mean for the high streamflow event was 

statistically different from that of the low streamflow events was assessed. The test was 

applied at the 5% significance level in all cases.  

Twenty days before the anomalous event (lag = -20 days), positive streamfunction 

anomalies were preferred over the East Coast of the US, with the greatest anomalies being 

centered around 60°W and 47°N. The anomaly center persisted through lag = 0. The 

Rossby wave train first emerged at lag = -16, where a series of alternating anomaly centers 

appeared, representing a series of upper-level high- and low-pressure systems. The pattern 

appears to be consistent with a typical mid-latitude upper atmospheric response to tropical 

convection (Horel and Wallace, 1981; Hoskins and Karoly, 1981). The coherent patterns 

of streamfunction anomalies were generally most pronounced at lag = -4 days. The reason 

why the most pronounced atmospheric anomalies preceded the anomalous streamflow 

events by 4 days was because streamflow typically lagged precipitation by 4 days. This lag 

relationship was corroborated by conducting a lag composite analysis of daily ERA 

precipitation with daily Delaware River streamflow. Similar lag composite analyses were 

conducted for the Hudson and Susquehanna Rivers and the results were nearly identical. 

The similarity among the results was not surprising, however; the atmospheric patterns 

analyzed had large spatial extents compared to that of the study region.  
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Figure 6.6. (a) – (f) Mean 300 hPa streamfunction anomalies for 75th percentile daily Delaware River 

streamflow events (a) 20 days, (b) 16 days, (c) 12 days, (d) 8 days, (e) 4 days, and (f) 0 days before the 

anomalous streamflow events. Contours enclose regions of 5% statistical significance as determined by the 

two-sample student-t test. 

Figure 6.7 shows a lag composite analysis of daily MSLP anomalies associated 

with the high streamflow events. Similar to the 300-hPa streamfunction composite, a region 

of positive MSLP anomalies were centered around 60°W and 47°N and the feature 

persisted at all lags. A negative anomaly center was also located over the Southeastern US 

and also persisted at all lags. Another interesting feature is the negative MSLP anomalies 

over the polar region from lags -20 to -4 days. The negative anomalies imply that 

anomalously high streamflow events are related to a stronger-than-normal Arctic 

Oscillation days in advance of the anomalous events. The Arctic Oscillation represents the 

surface signature of fluctuations in the polar vortex aloft (Thomas and Wallace, 1999). A 

similar composite analysis was conducted for the Hudson and Susquehanna Rivers and the 

results were found to be nearly identical.  
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Figure 6.7. Same as Figure 6.6 except for MSLP from 1985-2013. The region used to calculate the Atlantic 

MSLP index is labeled Box 2 and the region used to calculate the Southeast MSLP index is labeled Box 1. 

Box 1 represents the region bounded latitudinally by 30°N and 40°N and longitudinally by 80°W and 95°W, 

while Box 2 represents the region bounded latitudinally by 40°N and 50°N and longitudinally 45°W and 

60°W. 

6.4.3 Correlation Analysis  

A prominent feature in Figure 6.7 is the MSLP dipole situated over the Eastern US 

during and prior to anomalous streamflow events. This MSLP dipole-streamflow 

relationship is physical because the dipole pattern is conducive to precipitation over the 

Eastern US. Therefore, an index representing the strength and evolution of the dipole 

pattern may be a better indicator of the streamflow intensity than the standard 

teleconnection indices such as NAO and PNA. A MSLP index was thus constructed as 

follows: (1) Daily MSLP in Box 1 and in Box 2 shown in Figure 6.7e were spatially 

averaged; (2) the time series were normalized by dividing them by their respective standard 

deviations; and (3) the Eastern North American dipole index (ENA) was calculated using 

the formula 

𝑝𝑑𝑖𝑝𝑜𝑙𝑒 =  (𝑀𝑆𝐿𝑃)𝑏𝑜𝑥2 − (𝑀𝑆𝐿𝑃)𝑏𝑜𝑥1,                                   (6.8) 
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where (𝑀𝑆𝐿𝑃)𝑏𝑜𝑥1 is the normalized MSLP anomaly corresponding to Box 1, and the 

same for Box 2. The larger the value of 𝑝𝑑𝑖𝑝𝑜𝑙𝑒, the greater the pressure difference between 

the anomaly centers. For the remainder of the paper (𝑀𝑆𝐿𝑃)𝑏𝑜𝑥2 will be referred to as the 

Atlantic MSLP index and (𝑀𝑆𝐿𝑃)𝑏𝑜𝑥1 will be referred to as the Southeast MSLP index.  

 The daily ENA index together with its wavelet power spectrum is shown Figure 

6.8. The time series is rather noisy but the wavelet spectrum indicates that the index 

exhibited significant variability at a period of 7 days, timescales often associated with 

synoptic-scale weather. An interesting feature in the wavelet power spectrum is the 

alternating pattern of significant power and non-significant power. The significant power 

occurred during the winter when the atmosphere was more dynamically active and the 

deficits coincided with the summer when the atmosphere was less active. The wavelet 

power spectrum therefore suggests that the MSLP dipole is mainly a winter phenomenon. 

The global wavelet power spectra also detected enhanced power at a period of 41 months.  

 

Figure 6.8. (a) 7-day running mean of the ENA index, (b) the wavelet power spectrum of the raw ENA index, 

and (c) the corresponding global wavelet power spectrum. See Figure 6.3 for details of features found in the 

wavelet power spectra. 

Figure 6.9 shows the cross-correlation of streamflow for the Delaware, Hudson, and 

Susquehanna Rivers with the daily Southeast MSLP, Atlantic MSLP, ENA, and NAO 

indices. With the exception of the NAO index, the cross-correlation coefficients with 

streamflow peaked at lags of 2-4 days because streamflow lags precipitation by 2-4 days, 

as mentioned earlier. It is also noted that the ENA index was a better predictor of 
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streamflow than the other three indices. The results suggests that the daily ENA index 

should be monitored and forecasted in the same way as the NAO index is at the CPC. A 

similar cross-correlation analysis with the PNA index was also performed and the cross-

correlation coefficients were found to be weaker than those associated with the NAO index.  

Figure 6.9. Cross-correlation of streamflow for the Delaware, Hudson, and Susquehanna Rivers with (a) 

Atlantic MSLP index, (b) Southeast MSLP index, (c) ENA index, and (d) the NAO index for 1985-2013. 

Dotted lines represent the 5% significance bounds. 

The wavelet coherence between the ENA index and the daily flows for the 

Delaware, Hudson, and Susquehanna Rivers are shown in Figure 6.10. Numerous areawise 

significant results were found in the 0.8-5 month period band for all three rivers. For all 

three rivers, at least some areawise significant coherence was identified in the 11-41 month 

period band and thus the significant power shown in Figure 6.3 may have partially resulted 

from atmospheric forcing. There are also corresponding areawise significance regions in 

the wavelet coherence spectra for salinity (Figure 6.11). For example, enhanced coherence 

with both salinity and streamflow at a period of 92 months was identified and the coherence 

for Chesapeake Bay salinity and Susquehanna streamflow was areawise significant. The 

coherence at that timescale implies that the Chesapeake Bay salinity variability may have 

been due to atmospheric forcing, contrasting with the result from Lee and Lwiza (2008), 

who argued that the quasi-decadal variability of Chesapeake Bay bottom salinity was due 

to the meandering of the Gulf Stream.  
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Figure 6.10. (a) Wavelet coherence between the ENA index and daily Delaware River streamflow. Contours 

enclose regions of 5% areawise significance and arrows indicate relative phase relationships. (b) The 

corresponding global coherence spectrum. (c) – (d) Same as (a) – (d) except for Hudson River streamflow. 

(e) – (f) Same as (a) – (b) except for Susquehanna River streamflow. 

 



147 
 

 

Figure 6.11. (a) Wavelet coherence between the monthly ENA index and Reedy Island salinity and (b) the 

corresponding global coherence spectra. (c) – (d) Same as (a) – (b) except for the Hudson River salt front 

position. (e) – (f) Same as (a) – (b) except for Chesapeake Bay surface salinity. For details of features found 

in the coherence spectra see Figure 6.10. 

6.4.4 Tropical and Oceanic Connections  

The fact that the arching Rossby wave train (Fig. 6.6) is concurrent with the MSLP 

dipole (Fig. 6.7) suggests that the ENA index may be preceded by tropical convection. A 

lag composite analysis of the ENA index with 300-hPa streamfunction anomalies was 

conducted. As shown in Figure 6.12, a positive ENA index event was generally preceded 

by negative 300-hPa streamfunction anomalies situated over the Southeast US. The 

anomaly centers at lag = 0 days were shifted eastward relative to their initial position at lag 

-20 days. A coherent pattern of alternating anomaly centers emerged at lag = -4 days and 

the pattern became most pronounced at lag = 0 days. The coherent pattern may have been 

due to Rossby waves generated in the tropics that propagated to the mid-latitudes, arced 

over North America, and finally propagated equatorward. Furthermore, the results of the 

composite analysis indicate that the ENA index may have been modulated by Rossby wave 

activity from the tropics. However, a more direct linkage between tropical convection and 

the ENA index would require an additional investigation of its relationship with outgoing 

longwave radiation or tropical precipitation. The wave pattern, nevertheless, resembles the 

pattern of a typical mid-latitude upper-atmospheric response to tropical forcing (Feldstein, 

2000).  
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Figure 6.12. Same as Figure 6.7 except for the ENA index composited with 300 hPa streamfunction 

anomalies for the period 1985-2013. 

To determine if ENSO was related to the ENA index, wavelet coherence between 

the Niño 4 index and the monthly ENA index was computed (not shown). Significant 

coherence was found between the two indices at a period of 74 months. Furthermore, a 

composite analysis was conducted between a filtered version of the ENA index and daily 

300-hPa streamfuction anomalies. The filtered ENA index was calculated by taking the 

wavelet transform of ENA index, setting all wavelet coefficients to zero except those 

associated with the period of 74 months, and taking the resulting inverse wavelet transform 

of the new set of wavelet coefficients. The result of the composite analysis is shown in 

Figure 6.13. Remarkably, the results are similar to those shown in Figure 6.7, with Rossby 

waves emanating from the tropics, arcing over North America, and finally moving 

equatorward. The tropically forced Rossby waves operated on timescales of days so that 

the role of the low-frequency ENSO modes was to modulate the high-frequency variability 

of the ENA index. The modulation of the high-frequency variability would have then led 
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to low-frequency variability of the ENA index, inducing the low-frequency linkages with 

streamflow in the 24-48 month period band shown in Figure 6.10.  

Figure 6.13. Mean 300 hPa streamfunction anomalies for the positive phase of the quasi-decadal mode with 

period of 74 months of the ENA index. Contours enclose regions of 5% significance as determined by the 

two-sample student-t test by comparing the mean for the positive phase with that of the negative phase. 

The corresponding composite plot for MSLP shown in Figure 6.14 revealed a 

negative MSLP signature in which negative MSLP anomalies were located over the 

Southeastern US and positive anomalies were located over northern Canada and extended 

over the North Atlantic. The negative anomalies situated over the Southeast US also 

extended over the subtropical Atlantic Ocean, which would have spun down the subtropical 

gyre resulting in the equatorward movement of the Gulf Stream. It was thus hypothesized 

that at a period of 74 months, the Gulf Stream index was coherent with the ENA index. 

Figure 6.15a shows the 2-year running mean of the ENA index and GSI, and shows how 

the time series varied coherently with opposite phase. Moreover, Figure 6.15b shows that 

the coherent, out-of-phase fluctuations were most pronounced at a period of 74 months. 

The global coherence spectrum also indicates that the relationship at a period of 74 months 

was statistically significant. The out-of-phase relationship between the ENA index and the 

GSI can be partially explained by ENSO: during warm ENSO phases, according to Figure 

6.12, daily positive extremes of the ENA index are more likely to occur, which are also 

associated with greater negative MSLP anomalies over the subtropical Atlantic Ocean. The 

atmospheric forcing would then have been integrated by the ocean and the integration 
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would have resulted in the spin down of the subtropical gyre and the equatorward shift of 

the Gulf Stream.  

 

Figure 6.14. Same as Figure 6.13 except for daily MSLP anomalies. 

The impact of ENSO on the GSI-ENA index relationship is supported in the partial 

wavelet coherence diagram shown in Figure 6.15d. The removal of the common 

dependence of the GSI and ENA index with the Niño 4 index resulted in weaker coherence 

between the time series. The reduction in coherence suggests that the observed relationship 

between the GSI and ENA index would have been weaker had it not been for ENSO-related 

changes in daily weather. The results are in agreement with Figure 6.13 that showed how 

a quasi-decadal mode of the ENA index was associated with Rossby wave trains from the 

tropics. Consistent with Taylor et al. (1998), the results also show that changes in the Gulf 

Stream were partially related to ENSO. The phase-locked behavior between the GSI and 

ENA index may explain why both salinity and streamflow exhibited enhanced variability 

at quasi-decadal timescales. During positive GSI phases, shelf salinity tends to be greater 

and concurrent with positive GSI phases were also negative ENA phases, which 

corresponded to low-flow conditions. The low-flow conditions resulted in increased 

estuarine salinity and thus the similarity between streamflow and salinity wavelet power 

spectra. The GSI-ENA index co-variability will make it difficult to separate pure Gulf 

Stream influences on estuarine salinity from precipitation variability associated with 

evolving atmosphere patterns.  
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Figure 6.15. (a) 2-year running mean of the GSI and the ENA index, (b) wavelet coherence between the GSI 

and the ENA index, and (c) the corresponding global coherence spectra. For details of features found in the 

coherence spectra see Figure 6.10. (d) Partial wavelet coherence between the GSI and ENA index with their 

common dependence with the Niño 4 index removed. Contours enclose regions of 5% significance. (e) The 

global partial wavelet coherence spectra. 

6.5. Conclusion  

The relationship of large-scale atmospheric patterns with daily streamflow and 

monthly salinity was investigated on daily to decadal timescales. A composite analysis 

determined that anomalous high streamflow events are associated with Rossby waves 

emanating from the tropics. Coincident with the Rossby wave trains were dipole signatures 

of MSLP in which negative anomalies were located over the Southeastern US and positive 

anomalies were located over the northwestern North Atlantic Ocean. An ENA index was 

created to measure the strength and evolution of the pressure difference between the 

anomaly centers. A wavelet coherence analysis revealed that the index fluctuated 
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coherently with streamflow at timescales of 4-64 days and also at a period of 41 months. 

Estuarine salinity was also determined to have varied coherently with the ENA index at the 

same timescales. A wavelet coherence analysis together with a composite analysis of 300-

hPa streamfunction anomalies suggested that the MSLP dipole was modulated by tropical 

convection and the resulting relationship generated phase-locked behavior with the GSI. 

The common forcing mechanism of both the GSI and the ENA index may make it difficult 

to separate pure Gulf Stream influences on mid-Atlantic estuaries from those associated 

with fluctuations in the ENA index.  
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Chapter 7 

Additional Topics 

7.1. Introduction   

In previous chapters either monthly streamflow data or a portion of the daily streamflow 

time series were examined. Moreover, the powerful cumulative areawise test was not 

applied to the full streamflow time series because it was developed after Chapter 5 was 

submitted publication. Thus, in this chapter previous results from earlier chapters are re-

examined and new results are presented.  

7.2. Wavelet Analysis of Streamflow and Precipitation   

Shown in Figure 7.1a is the daily Delaware River streamflow time series from 

1913-2014. The most salient features were the 1930s and 1960s droughts, which were 

marked by a suppression of flow events exceeding the 95th percentile. In fact, there was a 

2-year period in the 1960s in which not a single 95th percentile flow event occurred. Other 

notable features include the highest flow event that occurred in 1955 and the recent wet 

period or pluvial following the drought of 2002. The 1955 extreme flow event was caused 

by Hurricanes Diane and Connie, which traversed the region only a few days apart. 

 The wavelet power spectrum of the time series revealed numerous significant 

periodicities, where the significance was assessed from the application of the cumulative 

areawise test at the 5% level (Figure 7.1b). Numerous significant results were found in the 

0.625-2 month period and are presumably associated with weather events. Perhaps more 

interesting is the lack of significance in the 1930s, 1960s, and around 2002. The lack of 

significance implies that extreme events were suppressed during those periods of drought, 

as shown in Figure 7.1a. Another prominent feature was the region of significance located 

in the 128-512 month period band. Those low-frequency periodicities resulted from the 

suppression of high-flow events during the 1930s drought and 1960s droughts and the 

relatively wet intermediate period. Such a relationship between high-frequency and low-

frequency events is inconsistent with a red-noise process: for a red-noise process, statistical 

moments do not change with time, being a stationary process. Daily Delaware River 

streamflow, on the other hand, was marked by a decrease in variance during the 1930s 
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drought, the 1960s droughts, and other smaller droughts. This change in variance suggests 

that the behavior of streamflow was not simply governed by a red-noise process but related 

to mechanisms with nonstationary statistics.  

 

Figure 7.1. (a) Daily Delaware River streamflow anomalies and (b) the corresponding wavelet power 

spectrum. Contours enclose regions of 5% cumulative areawise significance. (c) Global wavelet power 

spectrum corresponding to (a). Blue shading represents the 95% confidence interval obtained from the block 

bootstrap procedure.  
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To see whether streamflow may have been related to external forcing from tropics, 

the wavelet coherence between monthly Delaware River Basin precipitation and the 

monthly Southern Oscillation index was computed (Figure 7.2). Unlike in Chapter 5, the 

cumulative areawise test will be applied to the wavelet coherence spectrum, providing 

more confidence in the results. To be consistent with Chapter 5, the analysis was only 

conducted for the period 1913-2013. Figure 7.2 shows cumulative areawise significant 

coherence at a period of 22 years. Moreover, the global coherence spectrum also provides 

evidence that the two time series evolved coherently from 1913 to 2013. The result suggests 

that the significant power found in the wavelet power spectrum of Delaware streamflow 

was the result of forcing from the tropics. 

 

Figure 7.2. (a) Local wavelet coherence between monthly DRB precipitation and SOI. Arrows indicate the 

relative phase relationship. (b) Global coherence corresponding to (a). Graying represents the 95% 

confidence interval obtained from the block bootstrap procedure.  

7.3. Higher-order Wavelet Analysis of Streamflow  

It is not known what, if any, nonlinear properties the Delaware River streamflow 

time series possesses. The nonlinear properties are therefore investigated using high-order 

wavelet analysis and topological methods. The topological wavelet diagram of Delaware 

River streamflow for 1900-2015 is shown in Figure 7.3. The plot shows the centroids of 

holes located in significance patches at the 0.1%, 1%, and 5% levels. There were numerous 

holes located in the 0.625-1 month period band.  
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Figure 7.3. Topological wavelet diagram corresponding the wavelet power spectrum of daily Delaware River 

streamflow. 

As shown by Schulte et al. (2015) the presence of holes may indicate the presence 

of nonlinearities. A notable feature is the void in holes from 1965 to 1975, which 

corresponds partially with the 1960s drought. To determine if the holes were related to 

nonlinearities, the autobicoherence spectrum of Delaware River streamflow was computed 

(Figure 7.4). As indicated by the contours, a large region of significance was found, with a 

local maximum in autobicoherence located at (6.5, 16) months. Recall that the 

autobicoherence spectrum is the decomposition of skewness so that skewness of the 

streamflow time series was attributed to high-frequency oscillations in the time series. 

Indeed, an inspection of Figure 7.1a shows that the time series is skewed, where positive 

anomalies are generally greater than negative anomalies. Skewness is almost always 

observed in streamflow and precipitation time series because the distributions of 

streamflow and precipitation are bounded by zero. However, if the time series are 

smoothed, say, using a 365-day running mean, then the time series become less skewed. 

The decrease in skewness could explain why only a few peaks were found in the low-

frequency portion of the autobicoherence spectrum. It is noted that nonlinearities can be of 

higher order and such nonlinearities would not be detected by a bispectral analysis.   
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Figure 7.4. Autobicoherence spectrum of daily Delaware River streamflow anomalies for 1913-2015. 

Contours enclose regions of significance after controlling the false discovery rate at the 5% level. 

 

Figure 7.5. 5-year running mean of local autobicoherence corresponding to the point (10, 10) in the full 

autobicoherence spectrum shown Fig. 7.4. 

The autobicoherence spectrum shown in Figure 7.4 does not show time behavior of 

the nonlinearities. The local autobicoherence at (6.5, 16) in the autobicoherence spectrum 

of Delaware River streamflow was therefore computed and is shown in Figure 7.5. The 

strength of the nonlinearity at (6.5, 16) varied considerably and also implies that the 

skewness of the time series also evolved temporally. A comparison of the streamflow time 

series and the autobicoherence time series reveals that the declines in streamflow coincided 

with the declines in local autobicoherence. During droughts, therefore, streamflow time 
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series becomes less skewed and the positive anomalies become similar in magnitude to 

negative anomalies. During high-flow periods the opposite occurred; high-skewness or 

greater bicoherence was identified.  

7.4 Conclusions  

A wavelet power spectrum of daily Delaware River streamflow detected significant 

periodicities in the period bands 0.0625-1, 128, 4-8, and 128-512 months. The inspection 

of the time series with its power spectrum showed that variance changes with time, which 

is inconsistent with a red-noise process. In particular, the declines in variance at high-

frequencies were associated with droughts of various magnitudes and the absence of high 

daily flow events resulted in low-frequency oscillations in the time series. The implication 

of the temporally changing variance is that statistical analyses assuming stationarity are 

inappropriate. The skewness of the time series was also found to be nonstationary, with the 

lowest skewness having occurred during droughts. Together, the wavelet power and 

autobicoherence spectra showed that not only is the mean streamflow changing with time, 

but also the variance and skewness. Droughts are associated with large changes in all three 

of the statistical moments and therefore analyses assuming stationary may not be the most 

appropriate approach to understanding them.  
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Chapter 8 

Summary and Discussion  

Of interest to many climate scientists is the understanding of historical time series. 

Insight into the past behavior of time series is useful from a prediction point of view. If, 

for example, the known causes of drought are identified it may be possible foresee future 

droughts. However, the caveat is that the physical mechanisms governing a time series 

behavior must be themselves predictable. The understanding of time series requires the use 

of various time series and statistical tools. A particularly powerful tool is wavelet analysis, 

which allows non-stationary features of time series to be quantified as a function of time 

and frequency. Like in Fourier analysis, the results must be tested against a null hypothesis 

because random processes such as red-noise can produce seemingly deterministic features. 

The significance test developed by Torrence and Compo (1998), which first put wavelet 

analysis in a statistical framework, was found to have low statistical power by Maraun et 

al. (2004). Thus, in the present work, new statistical procedures were developed that 

addressed the limitations of existing procedures. The cumulative areawise test, in 

particular, was found to have greater statistical power than the geometric test but at the 

expense of slightly worse computational efficiency.  

The cumulative areawise test in the present work was only applied to a nested 

sequence of two-dimensional objects but there are natural generalizations. In global 

wavelet spectra, the test could be applied to a sequence of one-dimensional objects, 

namely, arcs, whose test statistics would be cumulative arc lengths. Analogously, the test 

could also be applied to a sequence of three-dimensional objects and the test statistic would 

be cumulative volume. Thus, the cumulative areawise test could be applicable to n-

dimensional wavelet analysis.   

The application of cumulative areawise testing extends beyond the realm of wavelet 

analysis. In the physical sciences, one often applies statistical procedures to autcorrelated 

fields, where the data at one point are temporally correlated with data at another point. 

Thus, the implementation of a statistical procedure would result in clusters of spurious 

results arising from multiple-testing problems. However, according to the cumulative 
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areawise test, one can distinguish clusters of true positives from clusters of false positives 

by examining how their areas change as the significance level of the test is changed. The 

research presented here suggests that future work should pursue the development of a more 

generalized cumulative areawise test and an evaluation of its statistical power relative to 

existing procedures.  

The topological methods developed in this work were limited in scope and the 

results determined from their application were empirically derived. In Chapter 2, for 

example, the number of holes and patches were computed in the wavelet domain. There 

are, however, natural extensions to higher dimensions, where one would be examining the 

behavior n-dimensional holes. For example, 2-dimensional holes are voids in a topological 

space such as that found in the 2-dimensional manifold 𝑆2 =  {(𝑥1, 𝑥2, 𝑥3): 𝑥1
2 +  𝑥2

2 +

𝑥3
2 = 1}. With higher dimensional analogs, it may be possible to apply well-known 

theorems of algebraic topology such as Poincare Duality and Alexander Duality (Hatcher, 

2002) to the understanding of statistical significance testing of n-dimensional wavelet 

analysis.  The application of the generalized cumulative areawise test will also have some 

theoretically constrained results: according to the Bokum-ulam theorem (Hatcher, 2002), 

for a continuous function onto a sphere, at least one pair of antipodal points must obtain 

the same value of the function. Viewing p-values on a spherical domain as the range of a 

continuous function, the theorem dictates there are at least two anti-podal points such that 

the test statistics at the points are equal and the associated p-values are also equal. Thus, 

significance patches, as constrained by the theorem, may appear at anti-podal points. The 

uninvestigated connections between algebraic topology and field significance testing 

merits further investigation. Thus, future work in statistical significance testing could 

include the establishment of links between topological theorems and statistical procedures.  

The 1960s drought in the Northeast US well-exemplifies the issue of predictability 

because different studies have produced contrasting results. Whereas climate models with 

prescribed SSTs cannot reproduce the 1960s drought (Seager et al., 2012), the investigation 

of observed data determined that La-Niña like conditions favored the abnormally dry 

conditions (Ning and Bradley, 2015). In the present work, statistical evidence points toward 

the 1960s drought being externally influenced from the tropics as opposed to internally 
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forced from the chaotic mid-latitude atmosphere. The wavelet coherence analysis, in 

particular, determined that streamflow of the Delaware, Hudson, and Susquehanna Rivers 

evolved coherently with the Southern Oscillation (SO) from 1900 to 2013 at a period of 22 

years. It remains unclear, however, how the teleconnection operates; the SO is a 

phenomenon with a characteristic timescale of 2-7 years, far outside the period band of 22 

years in which it is phase-locked to streamflow.  

A wavelet analysis of monthly streamflow determined that streamflow exhibited a 

significant 26-year periodicity and the region of significance in the wavelet power 

spectrum was co-located with the 1960s drought. The results imply that the 1960s drought 

was a low-frequency phenomena that was forced by the higher-frequency SO. A 

comparison of the wavelet power spectra of streamflow and precipitation showed that the 

drought was related to precipitation variability. Precipitation events are high-frequency 

events and therefore do not contain characteristic time scales exceeding days. Then, the 

natural question arises: how do low-frequency features appear in precipitation time series? 

The low-frequency periodicities are, in fact, produced through the modulation of daily 

weather events. It is therefore necessary to examine daily streamflow data to obtain a more 

complete understanding of the physical processes governing streamflow variability. In the 

previous works of Labat (2008), Whitney, (2010), Seager et al. (2012), and Chapter 5 

(Schulte et al., 2015a) only monthly data were considered, though the deficiency was 

addressed in Chapter 6. A composite analysis of 300 hPa streamfunction anomalies with 

daily Delaware River streamflow showed that anomalous streamflow events in the 1985-

2013 period were associated with Rossby waves emanating from the tropics. The result 

suggests that the recent pluvial to some extent has resulted from wave activity from the 

tropics. This result contrasts with that from Seager et al. (2012) who argued that the pluvial 

is the result of intrinsic atmospheric variability.  

 One may wonder what insights about the 1960s drought can be gained through the 

examination of daily data. The application of wavelet analysis to the daily Delaware River 

streamflow time series from 1913-2015 revealed that the historical drought were coincident 

with the absence of high daily streamflow events. This result supports the idea that the 

droughts arose through the modulation of daily weather events. In future work, daily 
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streamflow data will be composited with daily atmospheric fields to gain insight into the 

1960s drought.   
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Appendix A 

Reproducing Kernel Property of Wavelets  

Let F(s, t) be the continuous wavelet transform of a function  f(t) such that 

F(s, t) = ∬ 𝐾(𝑠, 𝑡;  𝑠′ , 𝑡′′)F(𝑠′, 𝑡′′)𝑑𝑠′𝑑𝑡′′.                                   (A1) 

Then the reproducing kernel is given by 

K = 
1

𝐶𝜓√𝑠𝑠′5/2
∫ [𝜓 (

𝑡′− 𝑡′′

𝑠′ ) 𝜓∗ (
𝑡− 𝑡′

𝑠
)] 𝑑𝑡′,                                       (A2) 

where 

𝐶𝜓 =  ∫
|𝛹(𝜔)|2

𝜔

∞

0
𝑑𝜔 <  ∞,                                                    (A3) 

and 𝛹(𝜔) is the Fourier transform of 𝜓, and the asterisk denotes the complex conjugate. 

The reproducing kernel captures the structure of wavelet coefficients whereby the wavelet 

coefficient at any point contains information about a nearby wavelet coefficient weighted 

by K (Tropea, 2007).  
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Appendix B 

Independence of Test Statistics from Chosen 

Reproducing Kernel  

Let 𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠) be the test statistic associated with a significance patch whose centroid 

is (𝐶𝑡,𝐶𝑠) and let 𝐴𝛼𝑔
𝑁 be the value of the test statistic corresponding to the 1 − 𝛼𝑔 

significance level of the geometric test. Writing  

𝐴𝛼𝑔
𝑁 =  

𝐴𝛼𝑔

𝐴𝑅
                                                         (B1) 

and  

𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠) =

𝐴𝑝𝑎𝑡𝑐ℎ

𝐴𝑅
,                                                     (B2) 

it follows that  

𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡,𝐶𝑠)

𝐴𝛼𝑔
𝑁 =  

𝐴𝑝𝑎𝑡𝑐ℎ

𝐴𝛼𝑔

,                                                        (B3) 

where is 𝐴𝑝𝑎𝑡𝑐ℎ the area of the significance patch and is the 𝐴𝛼𝑔
 the area of a typical patch 

under the null hypothesis corresponding to the 1 − 𝛼𝑔 significance level. Since Eq. (B3) 

no longer contains 𝐴𝑅, the relationship between 𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠) and 𝐴𝛼𝑔

𝑁  no longer depends 

on 𝑃𝑐𝑟𝑖𝑡.  
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Appendix C 

Proof of Green’s Theorem for a Polygon  

Recall that Green’s Theorem in the plane states that  

∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦) =  ∬ (
𝜕𝑄

𝜕𝑥
−  

𝜕𝑃

𝜕𝑦
) 𝑑𝐴

𝑑

𝐷
 

𝑓

𝐶
,                                           (C1)                                             

where C is a positively oriented, piecewise smooth curve, bounding a region D; 𝑭 =  〈𝑃, 𝑄〉 

is a vector field on D; and x and y are the usual Cartesian coordinates (Baxandall and 

Liebeck, 2008). Note that if one sets  

𝜕𝑄

𝜕𝑥
−  

𝜕𝑃

𝜕𝑦
= 1,                                                               (C2) 

then the right-hand side of Eq. (C1) can be used to calculate the area of a region D. Thus, 

let 𝑄 =  𝑥 2⁄  and 𝑃 = − 𝑦 2⁄  so that 

1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) = 𝐴(𝐷)

𝑓

𝐶
,                                                     (C3) 

where 𝐴(𝐷) denotes the area of D. Let (𝑥0, 𝑦0),…,(𝑥𝑚−1, 𝑦𝑚−1) be m-1 vertices of a 

polygon. If 𝐶0 is a line segment from (𝑥0, 𝑦0) to (𝑥1, 𝑦1), then 

∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) =  𝑥0
𝑓

𝐶0
𝑦1 −  𝑥1𝑦0.                                               (C4) 

More generally, denote by 𝐶𝑘 the segment from (𝑥𝑘, 𝑦𝑘) to (𝑥𝑘+1, 𝑦𝑘+1), recalling that 

𝑥𝑚 =  𝑥0 and 𝑦𝑚 =  𝑦0. Since C = 𝐶0⋃𝐶1, … ,∪ 𝐶𝑚−1, we can write 

𝐴(𝐷) =
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)

𝑓

𝐶

 

=
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) +

1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) + ⋯ +

𝑓

𝐶1
 
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)

𝑓

𝐶𝑚−1

𝑓

𝐶0
                      (C5)  

and thus 

𝐴(𝐷) =
1

2
(𝑥0𝑦1 −  𝑥1𝑦0) +   

1

2
(𝑥1𝑦2 −  𝑥2𝑦1) + ⋯ +  

1

2
(𝑥𝑚−1𝑦0 −  𝑥0𝑦𝑚−1) 

=
1

2
∑ (𝑥𝑘

𝑚−1
𝑘=0 𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘).                                                 (C6) 



166 
 

Thus, Eq. (2.11) follows from Green’s Theorem in a plane.  
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Appendix D 

Definition of Path-Component  

A path in a set X is defined as a continuous function 𝑓: 𝐼 → 𝑋. A set X is said to be 

path-connected if any two points x and y in X can be joined by a path. The path-component 

of a topological space X is the maximal path-connected subset of a set. Intuitively, one can 

think of a path-component as the largest isolated piece of the set. For example, the set could 

be the disjoint union of a square and a disc, in which case both the square and the disc are 

path-components.  
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Appendix E 

Proof of Inequality of Normalized Areas  

Let 𝑃1 and 𝑃2 be two subsets of a patch P with area A such that 𝑃2 is the set complement 

of  𝑃1. Let 𝐴1 and 𝐴2 denote the areas of 𝑃1 and 𝑃2, respectively. One can thus write  

𝐴 =  𝐴1 +  𝐴2,                                                              (E1) 

𝐴 =  𝑟1𝐴 + 𝑟2𝐴,                                                            (E2) 

and 

𝑟2 = 1 − 𝑟1,                                                              (E3) 

where 𝑟1, 𝑟2 ∈ [0,1]. The centroid of P can be written as 

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 =  

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 +  

1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡

𝑤

𝑃2

𝑤

𝑃1

𝑤

𝑃
                                       (E4) 

=
1

𝐴
∬ 𝑠𝑑𝑠𝑑𝑡 =  

𝑟1

𝐴1
∬ 𝑠𝑑𝑠𝑑𝑡 +  

𝑟2

𝐴2
∬ 𝑠𝑑𝑠𝑑𝑡

𝑤

𝑃2

𝑤

𝑃1

𝑤

𝑃
                                       (E5) 

or 

 𝐶𝑠 =  𝑟1𝐶1
𝑠 +  𝑟2𝐶2

𝑠,                                                        (E6)                                          

so that 

𝐶𝑠− 𝑟2 𝐶2
𝑠

𝑟1
=  𝐶1

𝑠,                                                            (E7) 

where 𝐶1
𝑠 and 𝐶2

𝑠 are the scale coordinates of the centroids for 𝑃1 and 𝑃2. The equation 

implies that  

𝐶𝑆 − 𝑟2 𝐶2
𝑠 > 0                                                            (E8) 

because 𝐶1
𝑠 is always positive. The normalized areas of P and 𝑃1 are given by  

𝐴𝑁 =
𝐴

(𝐶𝑠)2                                                                (E9) 

and 
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𝐴1
𝑁 =  

𝐴1

(𝐶1
𝑠)2.                                                               (E10) 

Thus,  

𝑟𝑛𝑜𝑟𝑚 =  
𝐴1

𝑁

𝐴𝑁 =
𝑟1

3(𝐶𝑠)2

(𝐶𝑠− (1− 𝑟1)𝐶2
𝑠)2 .                                               (E11) 

At 𝑟1= 0, 𝑟𝑛𝑜𝑟𝑚 = 0 because 𝑃1 has no area. At 𝑟1= 1, 𝑟𝑛𝑜𝑟𝑚 = 1 because 𝐴1 = 𝐴. Moreover, 

the function is monotonically increasing for 𝑟1  ∈ [0 1] so that 𝑟𝑛𝑜𝑟𝑚 ≤ 1. The same 

arguments hold for 𝑃2 except that 𝑟𝑛𝑜𝑟𝑚 decreases monotonically.   
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